476]
ORBIT OF A PLANET FROM THREE OBSERVATIONS.
421
52. We might in the equations
x : y' : 1 = (a, b, cja', /3', y) : - (a, b, c#>, /3, y) : (f, g, h$a", fi", y")
consider for instance G or N as alone variable, and then eliminate the variable
parameter so as to obtain a locus; but the results would be complicated and the
geometrical interpretations not very obvious.
53. I assume (as was done before) N = 0, G=b — 90°, H = c, that is, the position
of the orbit-pole Z' is longitude b, colatitude c, and the axis SX' is the line of nodes
or intersection of the orbit-plane with the ecliptic, viz., the longitude of this line is
= b - 90°.
The formulae become
or if these are
x' : y' : 1 = (a cos b + b sin b) cos c — c sin c
: — a sin b + b cos b
: (f cos b + g sin b) sin c + h cos c,
, _ X c cos c + X s sin c
x ~ W c cos c + W s sin c ’
, Y 0
J W c cos c + W s sin c ’
the values now are
X c — a cos b + b sin b,
X s = c,
Y 0 = — a sin b + b cos b,
W c = h,
W s = f cos 6 + g sin b,
and thence forming as before the values of tan A, l, m, cot S, and putting for shortness
V Wc + Wg, = Vh 2 + (f cos b + g sin b) 2 , = £1
we find after some easy reductions
A f J g ■ 7
tan A = r cos b + r sin b.
h h
m = ^ (— a sin b + b cos b),
l = i [(ah — cf) cos b + (bh — eg) sin 6],
cot 8 = —^ (— a sin b + b cos b) (— f sin b + g cos b),
= ^ (— f sin b + g cos b),