Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 7)

476] ORBIT OF A PLANET FROM THREE OBSERVATIONS, 
or observing that 
423 
tan 8 = 
il 
we have 
f sin b — g cos b ’ 
(b sin b + a cos b — hi) tan 8 = — — (f cos b + g sin b) (— a sin b + b cos b); 
d L 
and hence the result of the substitution is at once found to be 
(— a sin b + b cos b) 2 — ^ (— a sin b 4- b cos b) 2 (g sin b + f cos b) 2 
= m 2 h 2 , = 
h 2 (— a sin b + b cos b) 2 
il 2 
viz., the factor (— a sin b + b cos b) 2 divides out, and the equation then becomes 
1 h 2 
1 “ jp (g sin b + f cos b) 2 = ^, 
il 2 ' 
that is 
il 2 = h 2 + (g sin b + f cos b) 2 , 
which is in fact the value of il 2 . 
56. I seek for the direction of the hyperbola at the point (r, — ^ in question. 
We have 
dx : dy = (b cos b — a sin b) sin b + cos b tan 2 S (b sin b + a cos b — hZ) 
: — (b cos b — a sin b) cos b + sin b tan 2 8 (b sin b + a cos b — hi), 
and from the above values of (b sin b + a cos b — hi) and tan 8, we have 
_ . 7 , , .. g sin b + f cos b . . 7 . 7 N 
tan 2 o (b sm b + a cos b — hi) = j , (-asmo+b cos b); 
v i sm b — g cos b 
whence 
dx : dy= (b cos b — a sin b) sin b (f sin b — g cos b) + (g sin b + f cos b) cos b (— a sin b + b cos b) 
: — (b cos b — a sin b) cos b (f sin b — g cos b) + (g sin b + f cos b) sin b (— a sin b + b cos 6), 
which, multiplying out and reducing by means of the relation af+bg + ch = 0, becomes 
dx : dy = (— a sin b + b cos b) (sin 2 b + cos 2 b) f : (— a sin b + b cos b) (sin 2 b + cos 2 b) g; 
that is 
dx : dy = i : g, or = |, 
which shows that the hyperbola, at the point ^^ where it meets the ray, touches 
the projection 
x — A_y — B 
f ~~ 
of the ray on the plane of xy, which contains the hyperbola.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.