Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 7)

476] 
ORBIT OF A PLANET FROM THREE OBSERVATIONS. 
427 
the sign being taken in such manner that r\ shall be positive; viz., the sign must 
be the same as that of (f x , g 1} h x ]£a", /3", 7"). And we have the like formulse for 
r. 2 and r 3 . Substituting these values, the equation of the orbit becomes 
= 0. 
r , 
x' 
, 
y' 
, 
1 
u 1} 
( a i, bj, c x $a, 
7). 
-(a 1, b x , c^a, ß, 
yX 
(4, gl , hW, ß", y") 
^¿2 5 
(a 2 , b 2 , c 2 ][ 
f) 
X 
— (a 2 , b 2 , C 2 $ „ 
X 
(4, g 2 , h 2 $ „ ) 
U 3) 
(a- 3 , b 3 , c 3 $ 
» 
X 
-(a 3 , b 3 , c 3 $ „ 
X 
(4. g3, h 3 ][ „ ) 
62. 
Considering the 
minor 
determinants formed with the terms under the 
for instance 
this is 
( a i, b 1} c^a', /3', 7)--( a 2> b 2) c 2 ][a, ß, 7) 
+ (Al b 1? c x ][a, /3,7). (a„, b 2 , ß', 7) 
= (hiC 2 — boCi) (ßy' — ß'y) + (c x a 2 — c 2 a,) (ya! — y a) + (a,b,, - a 2 bj) (aff - cc'ß) 
= a" (b x c 2 — b^) + ß" (cja 2 — Caa^ + y" (ajb, — a 2 bj), 
or, what is the same thing, 
= (biCo — b 2 Cj, c x a 2 — c 2 aj, a x b 2 — aob^a", ß", y”); 
with the like expressions for the other two minors. And we thus obtain the following 
developed form of the equation, viz. 
\x' (a x , b x , c x $a, /3, y)+y'(a 1 , b lt c&a', ß', 7)}[-w 2 (f 3 , g 3 , h 3 $a", ß", y") 
+ u z (f 2 , g 2 , ha^a", ß", 7")] 
+ {x (& 2 , b 2 , c 2 $ „ )+2/ / (a 2 , b 2 , c 2 $ „ )} [- M 3 (f 1 , g x , h x ][ „ ) 
+ u 1 (f s , g 3 , h 3 $ „ )] 
4- (a 3 , b 3 , c,$ „ ) + y (a 3 , b 3 , C 3 £ „ )} [— Ui(f 2 , g 2 , h 2 ^ „ ) 
+ M4, g x , h x ]£ „ )] 
+ (b 2 c 3 — b g c 2) c 2 a 3 — c 3 a 2 , a 2 b 3 - agb 2 ][a", ß", y") [r (f x , g x , h^a", ß", 7") - m x ] 
+ (b 3 c x b x c 3 , c 3 a x c x a 3 , a 3 b x a x b 3 ^ „ ) [i (f 2 , g 2 > h 2 ]£ ,, ) m 2 ] 
4* (b x c 2 — b 2 c x , c x a 2 c 2 a x , a x b 2 a 2 b x ^£ ,, ) [i (f 3 > g 3 > h 3 ^£ ,, ) m 3 J 0, 
being an equation of the form fir = Ax' + By' 4- C. 
63. The coefficient of r is a quadric function of (a", ß", y"), and if this vanish 
the orbit is a right line. It thus appears that the orbit will be a right line provided 
only the orbit-axis be situate in a certain quadric cone, or (what is the same thing) 
the orbit-pole be situate in a certain spherical conic: agreeing with a preceding result, 
viz. the cone is that reciprocal to the cone, vertex S, circumscribed about the hyper- 
54—2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.