Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 7)

476] 
ORBIT OE A PLANET FROM THREE OBSERVATIONS. 
447 
94. I annex a specimen; the characteristics of the logarithms are omitted. 
o 
o 
II 
o 
o 
- 6° 34' 
+ 46° 34' 
02701 
56107 
00286 
06113 
16272 
02376 
76144 
65052 
06247 
65052 
06247 
32251 
65338 
12360 
81324 
08623 
a\ = 1-06418 
y 1 = -21014 
a? a = --45017 
•92367 
x 3 = — *65049 
•92367 
32251 
02701 
•01329 
•12196 
02701 
00830 
y-2 == + 
•91038 
2/3 = 
•80171 
29950 
03531 
log = 
•95922 
log 2/3 = 
90402 
</>, = 11° 10' 
n = 1-0847 
95922 
95922 
90402 
90402 
65338 
04752 
81324 
10980 
30584 
00674 
09078 
01382 
</> 2 (= 63° 41') = 116° 19', r 2 = 1-0157 <¿3 (= 50° 57') = 230° 57', r 3 = 1 0323. 
The calculation of the equation of the orbit is then as follows : 
A = -36397 
log = 56107 
12214 
A 2 = -13248 
A, 2 — 3 = — 2-86752 
log = 45750 
log R, = 03531 
R 1 = 1-0847 
A + 2 = 2-36397 
log = 37364 
logr 2 = 00674 
38038 
log \/l + A 2 = 02701 
77815 
log 6 VT+Ä 2 = 80516 (a) 
45750 
30103 
log 2 (A 2 - 3) = 75853 (c) 
23856 
B 2 = + 2-4010 
A - 2 = - 1-63603 
log = 21378 
log t3 = 01382 
22760 
R 3 = - 1-6889 
log 2 V3 (A 2 - 3) = 99709 (b)
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.