Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 7)

476] 
ORBIT OP A PLANET FROM THREE OBSERVATIONS. 
455 
Article Nos. 99 to 103. Planogram No. 4, the Orbit-pole in the Ecliptic. 
99. When the orbit-pole describes the circle of the ecliptic, the orbit-plane passes 
through the axis of z, or polar axis. We have c = 90°, and consequently 
a , ß , 7 = sin b, 
— cos b, 
0, 
a '> ß' > y = 0 , 
0 , 
- 1, 
a", ß\ 7" = cos b, 
sin b, 
0. 
Reverting for a moment to the general case where the six coordinates of the ray are 
(a, b, c, f, g, h), the formulae for the intersection by the orbit-plane are 
x' : y : 1 = (a, b, c$V, ß', y) = — c 
: — (a, b, c§a , ß , 7) : — a sin 5 + b cos b 
: ( f > g> h$a", ß", y") ■ f cos 6 + g sin b, 
that is 
and thence 
consequently 
If Sf 
— + - cos b + - sin b = 0, 
X c c 
+ - cos b — - sin b = 0 ; 
x c c 
1 : cos b : sin b = 
-af-bg _ gy' -f a 
c 2 * ex' 
b 
ex' 
ha/ : gy' + a : -iy' +b; 
h#' 2 = (gy’ + a) 2 + (%' - b) 2 , 
or, what is the same thing, 
ha/ 2 = (f 2 + g 2 ) y' 2 + 2 (ag — bf) y + a 2 + b 2 , 
or, in particular, if (as in the special symmetrical case) ag — bf = 0, then 
ha/ 2 = (f 2 + g 2 ) y' 2 + a 2 + b 2 . 
100. For the symmetrical system of rays we have as before 
a l> 
bi, Ci, fi, gi, h 2 = 0, V.3, 
-1, 
0, 1, 
Vs, 
a 2 , 
bo, C 2 , fo, g 2 , h 2 = 3, V3, 
2, 
Vs, 1, 
- 2 V3, 
a», 
bs> C 3 , f 3 , g 3 , h 3 = 3, V3, 
2, 
V3, 1, 
- 2V3, 
x-l 
• Vi ' 1= 1: 
n/ 3 cos & 
: sin b 
J 
x% 
: y 2 ' : 1 = — 2 : — 3 sin b + V3 cos b 
: sin 6 + V3 cos b, 
a? 3 
: y 3 ' : 1 = — 2 : 3 sin b + V3 cos b 
: sin b - 
V 3 cos 6, 
and thence
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.