Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 7)

479] 
FUNCTION IN THE LUNAR AND PLANETARY THEORIES. 
519 
and for the purpose of reference form as it were an Index to his result as follows : 
Reciprocal of Distance = as follows : 
Terms of order zero : terms of orders 2, 4, 6, having the same arguments. 
A' - ©' 
L’-11' 
L - © 
z- n 
(iy ( 1 . . 20) . . 
cos 
i 
0 
— i 
0 
(21)* a e) (K> (21 ..30) .. 
33 
i 
+ 1 
— i 
-1 
CO 
CO 
He* 
CO 
33 
i 
+ 2 
— i 
- 2 
(35 )«(*«)» (*«')* ( 35 •• 35) .. 
33 
i 
+ 3 
— i 
- 3 
(36)*(i«)V (36 ..39) .. 
5? 
i 
0 
-i + 2 
- 2 
(40) ¿ e) e') f (40 ..43) .. 
3 3 
i 
- 1 
-i + 2 
- 1 
(44)* (J e'frf (44 ..47) .. 
3) 
i 
- 2 
— i + 2 
0 
(«»‘(M'diV (48 ..48) .. 
33 
i 
+ 1 
-i + 2 
- 3 
(49)* (| e) (| e') 3 rf (49 ..49) 
3? 
i 
- 3 
- i + 2 
+ 1 
Terms of the first order : terms of orders 3, 5, 7, having the 
same arguments. 
L' - ©' 
L'-W 
Z - © 
z - n 
( 50) £ \e ( 50 . . 69) 
cos 
i 
0 
— ¿ 
+1 
(70y ( 70 .. 89) .. 
33 
i 
+ 1 
— ¿ 
0 
(90 )«(*« )■(*«') (90 •• 99) .. 
3) 
i 
+ 1 
— ¿ 
- 2 
(100)*(Je) (ief (100 .. 109) .. 
3? 
i 
+ 2 
— ¿ 
- 1 
<U0)*(è«)*(èO’ (no •• ns) •• 
33 
i 
+ 2 
— i 
- 3 
(1147(16 f^e'f (114 .. 117) .. 
33 
i 
+ 3 
— ¿ 
- 2 
(H8)‘(Je) 4 (J«') s (118 .. 118) .. 
33 
i 
+ 3 
— i 
- 4 
(1197(*«>»(i0 4 (119 •• 119) •• 
33 
i 
+ 4 
— i 
- 3 
(1207(1 e)rf (120 .. 129) 
33 
i 
0 
-i+ 2 
- 1 
(1307(1 e') if (130 .. 139) 
33 
i 
- 1 
— -i + 2 
0 
(1407 (|e ) 3 rf (140 .. 143) 
33 
i 
0 
- i + 2 
- 3 
(144)* (¡j e ) 2 (¿ d) rf (144 .. 147) .. 
33 
i 
+1 
-¿+2 
- 2 
(148)‘ft e ) ! (Je')f (148 .. 151) .. 
33 
i 
- 1 
-¿+2 
- 2 
(1527 (i«) e'frf (152 .. 155) .. 
33 
i 
- 2 
- i + 2 
- 1 
(1567 h (i e') 2 ^ 2 (156 .. 159) 
33 
i 
- 2 
-¿ + 2 
+ 1 
(160 7(|e')V (160 .. 163) 
33 
i 
- 3 
- ¿ + 2 
0 
(1647 (¿ e ) 4 (2 e ) rf (164 .. 164) 
33 
i 
+ 1 
- ¿ + 2 
- 4 
(1657(ie) 3 (£e')V (165 .. 165) 
33 
i 
+ 2 
- ¿ + 2 
- 3 
(166)* (J e ) 2 (| e'y rf (166 .. 166) 
33 
i 
- 3 
+ 2 
+ 2 
(167)<(ie) (Je')- 1 ^ (107 .. 167) .. 
33 
i 
- 4 
- i + 2 
+ 1 
(1687 (|e)V (168 .. 168) 
33 
i 
0 
- ¿ + 2 
- 3 
(169)* (1 e ) 2 (è e ') rf (169 .. 169) 
33 
i 
- 1 
— i + 4 
- 2 
(170)*(J«) (MV (170 .. 170) .. 
33 
i 
- 2 
— % + 4: 
- 1 
(1717(K)V (171 .. 171) 
33 
i 
- 3 
- i + 4 
0
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.