[485
485] PROBLEMS AND SOLUTIONS.
569
that the
ly deter-
hen this
that is,
■)
i of the
passing
ee given
;s drawn
unicursal
0, 0 = 0),
equation
which conic will touch the line through the points (a, ß, y) (a, ß', y), if
*J\fW - &i)\ + \/{g (7 a ' - 7 a )} + (<*ß' ~ *'ß)} = 0.
The equation of the pair of tangents from (a, ß, y) to the conic is
(f\ g-, - gk - hf, - bg\yy - ßz, az - yx, ßx - ay)- = 0,
« 2 (gy + hßf + y 2 {ha +fyf + 0 2 (fß + gay
+ [Zgha 2 - (ha +fy ) (fß + ga )}
+ 2*c {2hgß- - (fß + ga ) (gy + hß)}
+ 2xy [Zfgy- - (gy + hß) (ha +fy )} = 0,
but one of the tangents through (a, ß, y) being
x (ßy — ß'y) + y (ya! — y a) + 0 (aß' — aß) — 0,
it follows that the other tangent is
r (gy + hßy
ßy - ß'y
+ y
(ha +fyy
ya! — y a
1 (fß + g*y
aß'-a'ß
= 0.
Hence, writing for shortness
A =gy + h/3 , B =ha +fy, C =f/3 + ga,
A' = gy + lt/3', B' = ha + fy, C' = f/3' + ga,
the equations of the tangents from Q, Q' respectively are
^ — + C 2 '
A
A’ 2
ßy - ß'y
X
-+B 2
«ya — 7 a
y
- + B’ 2 —~ u — 7 + C' 2
aß' — aß
z
T7>= 0,
L5 = 0,
/3y' — f3'y ya — y'a ' ~ a/3' — aft
and for the coordinates of the intersection of these tangents, we have
X y z
ßy — ß'y ' y a! — y'a ' aß — aß
: B 2 Ö'* - B'-C 2 : C 2 A' 2 - C' 2 A 2 : A-B'- - A' 2 B 2 .
BC - B'G = f {-f(ßy - ßy) + g (ya! - y'a) + h (aß - aß)}
BG' + B'G = 2ghaa' + f{ f(ßy + ß'y) + g (ya' + y a) + h (aß + a'ß)}.
To satisfy the equation
V {/(ßy ~ ßy)) + V [g (ya - y'a)} + ß [h (aß' - a!ß)},
write
a 2 _ h 2 c 2
J ßy - ß'y ’ y ya' — y'a ’ 1 aß' — aß ’
and therefore a 4- b + c = 0 ; we then have
~f(ß7' “ ß'y) + g (y 01 ' ~ y' a ) + h ( a ß' ~ «ß)> = - « 2 + b- + c 2 , = - 26c ;
C. VII.
7 2