586
PKOBLEMS AND SOLUTIONS.
[485
The lemma is at once proved by means of my theorem for the relation between
the distances of five points in space, {Cambridge Mathematical Journal, vol. II. (1841),
p. 269, [1],) viz. if the point 1 is the centre of the circumscribed sphere, and the points
2, 3, 4, 5 are the points A, B, C, D respectively, then the relation in question, viz.
becomes
0 ,
(12) 2 ,
(13)*,
(14)*,
(15)*,
1
(21) 2 ,
0 ,
(23)*,
(24) 2 ,
(25)=,
1
(31) 2 ,
(32) 2 ,
0 ,
(34)*,
(35)*,
1
(41) 2 ,
(42) 2 ,
(43) 2 ,
0 ,
(45 ) 2 ,
1
(51) 2 ,
(52) 2 ,
(33)*,
(54) 2 ,
0 ,
1
1 ,
1 ,
1 ,
1 ,
1 ,
0
0,
r\
r*,
r 2 ,
r 2 ,
1
r 2 ,
o,
A*,
a 2 ,
1
r~,
h\
o,
A
A*,
1
r\
A>
o,
c 2 ,
1
r 2 ,
a 2 ,
A*,
c*,
o,
1
1,
1,
1,
1 ,
1 ,
0
Multiplying the last line by — r 2 and adding it to the first line, this is
r 2 ,
o,
o,
o,
o,
1
r 2 ,
o,
h 2 ,
g 2 >
a*,
1
r 2 ,
h\
0,
A>
A*,
1
r 2 ,
A
A,
o,
c*,
1
r 2 ,
a 2 ,
A*,
c 2 ,
o,
1
1,
1,
1,
1 ,
1 ,
0
and then proceeding in the same way with the first and last columns the equation is
— 2r 2 ,
0,
0,
0,
0,
1
0 ,
0,
h 2 ,
«*,
1
0 ,
A*,
0,
A,
A*,
1
0 ,
/ 2 >
o,
c*,
1
0 ,
a 2 ,
A*,
C*,
0,
1
1 ,
1,
1,
1,
1,
0
which is in fact the equation of the Lemma. See my papers in the Quarterly
Journal of Mathematics, vol. ill. (1859), pp. 275—277, [286], and vol. v. (1861),
pp. 381—384, [297].