Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 8)

496] 
51 
496. 
TABLES OF THE BINARY CUBIC FORMS FOR THE NEGATIVE 
DETERMINANTS, =0 (MOD. 4), FROM -4 to -400; AND =1 
(MOD. 4), FROM -3 TO -99; AND FOR FIVE IRREGULAR 
NEGATIVE DETERMINANTS. 
[From the Quarterly Journal of Pure and Applied Mathematics, vol. xi. (1871), 
pp. 246—261.] 
The theory of binary cubic forms for determinants, as well positive as negative, 
has been studied by M. Arndt in the memoir “ Versuch einer Theorie der homogenen 
Functionen des dritten Grades mit zwei Variabeln,” Grunert’s Archiv, t. xvii. (1851, 
pp. 1—54) ; and in the later memoir, “ Tabellarische Berechnung der reducirten binaren 
cubischen Formen und Klassification derselben fur aile negativen Determinanten (— D) 
von D = 3 bis D = 2000,” ditto, t. xxxi. (1858), pp. 335—445, he has given a very 
valuable Table of the forms for a Negative Determinant. It has appeared to me 
suitable to arrange this Table in the manner made use of for Quadratic Forms in 
my memoir “ Tables des formes quadratiques binaires pour les déterminants négatifs 
D = — 1 jusqu’à D = — 100, pour les déterminants positifs non carrés depuis D = 2 
jusqu’à D = 99, et pour les treize déterminants négatifs du premier millier, Grelle, 
t. LX. (1862), pp. 357—372, [335]; and confining myself to the limits of the last- 
mentioned tables I deduce from that of M. Arndt the three Tables which follow. 
To 
explain the arrangement, I give in the 
first instance the following extract from 
M. Arndt’s Table: 
D. 
Eeducirte Formen mit Charakteristik. 
Klassen. 
3 
(0, 1, 1, 0) (1, 0, -1, - 1) (1, 1, 0, -1) 
(2, 1, 2) (2, 1, 2) (2, 1, 2) 
| (0, 1, 1, 0), (1, o, - 1, ± 1) 
4 
(0, 1, 0, - 1) (1, 0, -1, 0) 
] (0, - 1, 0, 1) 
n o 
(2, 0, 2) (2, 0, 2) 
7—2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.