496]
51
496.
TABLES OF THE BINARY CUBIC FORMS FOR THE NEGATIVE
DETERMINANTS, =0 (MOD. 4), FROM -4 to -400; AND =1
(MOD. 4), FROM -3 TO -99; AND FOR FIVE IRREGULAR
NEGATIVE DETERMINANTS.
[From the Quarterly Journal of Pure and Applied Mathematics, vol. xi. (1871),
pp. 246—261.]
The theory of binary cubic forms for determinants, as well positive as negative,
has been studied by M. Arndt in the memoir “ Versuch einer Theorie der homogenen
Functionen des dritten Grades mit zwei Variabeln,” Grunert’s Archiv, t. xvii. (1851,
pp. 1—54) ; and in the later memoir, “ Tabellarische Berechnung der reducirten binaren
cubischen Formen und Klassification derselben fur aile negativen Determinanten (— D)
von D = 3 bis D = 2000,” ditto, t. xxxi. (1858), pp. 335—445, he has given a very
valuable Table of the forms for a Negative Determinant. It has appeared to me
suitable to arrange this Table in the manner made use of for Quadratic Forms in
my memoir “ Tables des formes quadratiques binaires pour les déterminants négatifs
D = — 1 jusqu’à D = — 100, pour les déterminants positifs non carrés depuis D = 2
jusqu’à D = 99, et pour les treize déterminants négatifs du premier millier, Grelle,
t. LX. (1862), pp. 357—372, [335]; and confining myself to the limits of the last-
mentioned tables I deduce from that of M. Arndt the three Tables which follow.
To
explain the arrangement, I give in the
first instance the following extract from
M. Arndt’s Table:
D.
Eeducirte Formen mit Charakteristik.
Klassen.
3
(0, 1, 1, 0) (1, 0, -1, - 1) (1, 1, 0, -1)
(2, 1, 2) (2, 1, 2) (2, 1, 2)
| (0, 1, 1, 0), (1, o, - 1, ± 1)
4
(0, 1, 0, - 1) (1, 0, -1, 0)
] (0, - 1, 0, 1)
n o
(2, 0, 2) (2, 0, 2)
7—2