Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 8)

172 
ON GEODESIC LINES 
[508 
We have, it is clear, (E x = d a E, E. 2 = d T E, &c.) 
4 4 
E, = ±-E, G, = --^-G. 
<7 + T <7 + T 
Hence the condition FG 2 — 2F 2 G + GGj = 0, in order that a = const, may be a geodesic, 
reduces itself to 
-~^~F-2F 2 +G 1 = 0; 
and similarly, the condition — 2EF l + E 1 F+EE. 2 = Q, in order that t = const, may be a 
geodesic, reduces itself to 
Ji— F— 2F, + E 2 = 0. 
<7 + T 
We have at once 
Е 2 = 4<а(т 2 — 1)(тсг + 1) — 46 (т 2 + 1) (та — 1) +4с.2т(сг— т) (ч-), 
= 4а (сг 2 — 1) (т<7 + 1) — 46 (о- 2 4- 1)(т<т— 1) — 4с.2сг(сг— т) (-=-), 
F 1 = 2а (т 2 — 1) (тег — а 2 + 2) — 2Ъ (т 2 + 1) (тег — сг 2 — 2) — 2с. 2т (т — Зет) (ч-), 
F 2 = 2а (о- 2 — 1) (то- — т 2 + 2) — 26 (о- 2 + 1) (то- — т 2 — 2) — 2с. 2о- (о- — Зт) (-г-), 
where denom. = (о- + т) 5 ; and substituting these values, the conditions are verified: we 
thus again see d ■posteriori that the right lines a = const, and т = const, are geodesics. 
25. The last-mentioned values of E, G are E = T + (t + o-) 4 , G = "Z -f- (t + o-) 4 ; and 
writing for a moment 
A = a (т 2 — 1) (a 2 — 1) — 6 (t 2 + 1) (o- 2 + 1) — с. 4o-t, 
we have F= A-=r (t + o-) 4 , the value of ds 2 is thus 
= Tdo- 2 + 2 Ada dr + Idr 2 (t 4- a) 4 , 
which should be 
where, as before, 
= 4p- 
dv 2 da 2 
P-p-i Q 
P, Q = (a+p) (b+p)(c +p), (a + ?)(6 + 7)(c + 2), 
respectively. We have already found 
dp dq Ыа 
or, what is the same thing, 
VP + VQ + V2 °’ 
dp dq 4 dr _ 
vr - ve 7r~ U; 
vp 
dp _ g / do - dr \ 
__ wx + vt; 
do- dT 
vs + vt;’ 
a? __ 9 
V<2~ 
V2 
dT\
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.