Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 8)

314 
ON CURVATURE AND ORTHOGONAL SURFACES. 
47. It remains to prove the above-mentioned identities. 
To reduce the term (A,. Q8X, 8Y, 8Z) 2 , we have 
A8X + H8Y+G8Z 
that is, 
and similarly 
whence 
= A(aX + hY+gZ) + H(hX+bY+fZ) + G(gX+fY + cZ) 
= X{ co (JiZ — gY) + JiZ-gY} 
+ Y {-co (f Y - bZ) -(fY- bZ) - coZ-lZ] 
+ Z{ co (fZ —cY)+ fZ-cY +C0Y+8Z} 
= « (Z8Y- Y8Z) + (Z8Y— Y8Z) + (Z8Y- Y8Z), 
A8X + 7TSF+ G8Z=co (Z8Y - Y8Z) + 2 (Z8Y - Y8Z)- 
H8X + B8Y +F8Z = co (X8Z - Z8X) + 2 (X8Z - Z8X), 
G8X +F8Y + C8Z = co (Y8X - X8Y) +2 (Y8X - X8Y), 
(A,..J8X, 8 Y, 8Zy = - 2 
8X, 
8Y, 
8Z 
x, 
Y, 
Z 
8X, 
SY, 
8Z 
48. Now, from the equations AX + HY + GZ = Z8Y — Y8Z, &c. we have 
value of twice the foregoing determinant 
2 det. = 2 {(aX + hY + gZ) (AX + HY + GZ) 
+ (hX + bY+fZ) (.EX + BY + FZ) 
+ (gX + fY + cZ)(GX + FY + GZ)}; 
and subtracting herefrom the function ((J.), .. ..), which is 
(BZ 2 +GY 2 — 2FYZ)a 
+ (GX 2 + AZ 2 - 2GZX) b 
+ (AY 2 + BX 2 — 2HYZ)c 
+ 2 (-AYZ-FX 2 +GXY+HXZ)f 
+ 2 (- BZX 4- FX Y - GY 2 +HYZ)g 
+ 2(-GXY+FXZ+ GYZ-HZ 2 )h, 
the difference is found to be 
= a{(A,..\X, Y, Z) 2 + A V 2 } 
+ b {(A,..IX, Y, Zf + BV 2 } 
+ c{(A,..lX, Y, Z) 2 + GV 2 } 
+ 2/ {(A + B + G) YZ +FV 2 } 
+ 2g{(A+B + G)ZX + GV 2 } 
- 2 h \(A + B+C)XY + HV%
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.