314
ON CURVATURE AND ORTHOGONAL SURFACES.
47. It remains to prove the above-mentioned identities.
To reduce the term (A,. Q8X, 8Y, 8Z) 2 , we have
A8X + H8Y+G8Z
that is,
and similarly
whence
= A(aX + hY+gZ) + H(hX+bY+fZ) + G(gX+fY + cZ)
= X{ co (JiZ — gY) + JiZ-gY}
+ Y {-co (f Y - bZ) -(fY- bZ) - coZ-lZ]
+ Z{ co (fZ —cY)+ fZ-cY +C0Y+8Z}
= « (Z8Y- Y8Z) + (Z8Y— Y8Z) + (Z8Y- Y8Z),
A8X + 7TSF+ G8Z=co (Z8Y - Y8Z) + 2 (Z8Y - Y8Z)-
H8X + B8Y +F8Z = co (X8Z - Z8X) + 2 (X8Z - Z8X),
G8X +F8Y + C8Z = co (Y8X - X8Y) +2 (Y8X - X8Y),
(A,..J8X, 8 Y, 8Zy = - 2
8X,
8Y,
8Z
x,
Y,
Z
8X,
SY,
8Z
48. Now, from the equations AX + HY + GZ = Z8Y — Y8Z, &c. we have
value of twice the foregoing determinant
2 det. = 2 {(aX + hY + gZ) (AX + HY + GZ)
+ (hX + bY+fZ) (.EX + BY + FZ)
+ (gX + fY + cZ)(GX + FY + GZ)};
and subtracting herefrom the function ((J.), .. ..), which is
(BZ 2 +GY 2 — 2FYZ)a
+ (GX 2 + AZ 2 - 2GZX) b
+ (AY 2 + BX 2 — 2HYZ)c
+ 2 (-AYZ-FX 2 +GXY+HXZ)f
+ 2 (- BZX 4- FX Y - GY 2 +HYZ)g
+ 2(-GXY+FXZ+ GYZ-HZ 2 )h,
the difference is found to be
= a{(A,..\X, Y, Z) 2 + A V 2 }
+ b {(A,..IX, Y, Zf + BV 2 }
+ c{(A,..lX, Y, Z) 2 + GV 2 }
+ 2/ {(A + B + G) YZ +FV 2 }
+ 2g{(A+B + G)ZX + GV 2 }
- 2 h \(A + B+C)XY + HV%