Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 8)

537] 
that is, 
SOLUTIONS OF A SMITHS PRIZE PAPER FOR 1871. 
whence 
that is, 
Q" {2A- +1 + 2n V(1 + ft 2 )} - i {2ft 2 + 1-2» V(1 + A 2 )} 
= 4 {a? V(1 + «0 + y V(1 + 2/0} 
+ 4xy Q {V(l + ft 2 ) + n] - ^ {V(l + ft 2 ) - n) , 
4 [x V(1 + a: 2 ) + y V(1 + 2/0 + 2nxy — n V(1 + ft 2 )} 
= Q 2 {2ft 2 + 1 + 2» V(1 + a 2 )} - ~ {2ft 2 + 1 - 2n V(1 + ft 2 )} 
+ 8ftau/ — 4?i V(1 + ft 2 ) 
— 4^2/ 
Q {V(i + a 2 ) + w}-^{V( 1 + a 2 ) — ft} 
— (Q 2 — Qhj (^a 2 + 1) + (Q 2 + — 2j 2n V(1 + ft 2 ) 
- (Q - g) ^y V(1 + ft 2 ) - 4 (q + - - 2) nxy 
= (Q-1) (2ft 2 + 1) 
+ +1)2 2n V(1 + A 2 ) 
- 4 % + ^ xy Vd + A 2 ) 
(Q _ 1> ) 
- 4 — ^ ' ftaft/j 
= (Q — 1) 12 suppose, 
# V(1 + a; 2 ) + y V(1 + y 2 ) + 2fta;?/ — ft V( 1 + ft 2 ) = i (Q - 1) 12. 
And the integral equation is 
i(g-i)a + iog<2 = c, 
which, for (7=0, is satisfied by Q = 1. 
Now starting from 
{a; + V(1 + a; 2 )} [y + V(1 + f)} 
v ft + V(1 + ft 2 ) 
we have 
V(1 + a; 2 ) + X = Q |V(1 + ft 2 ) + ft} {V(l + y 2 ) ~ 2/}> 
V(1 + x 2 ) - x = g {V(l + ft 2 ) - ft} {V(l + 2/0 + 2/}>
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.