537]
SOLUTIONS OF A SMITH’S PRIZE PAPER FOR 1871.
513
11. A particle is attracted to two centres of force, one of them at the origin, the
other revolving about the origin in a circle in the plane of xy with a uniform angular
velocity n': find the equations of motion; and writing v for the velocity of the particle
and A for the resolved area (about the fixed centre) in the plane of xy, show that
dA
there is a first integral giving the value of v- — 4>n in terms of the coordinates of
the particle and of the revolving centre.
Take %, y, 0 for the coordinates of the moving centre, so that
f = a cos n't, y = a sin n't;
the equations of motion are
d 2 x . x . x — P
dt 2 r r p
d 2 z , z , z
= o ’
where
We have
But
whence
r- — a? + y 2 + z 2 ,
p> = (x- £) 2 + (y - yf + ¿ 2 .
r dr = x dx -t-y dy + z dz,
p dp = (x — |) (dx — d%) + (y — y) (dy — dy) + z dz.
d% = — n'a sin n't dt — — n'y dt,
dy = n'a cos n't dt = nfi dt,
p dp = (x — %)dx + (y — y) dy + z dz
+ n [y (x-Ç)-Ç (y - y)] dt
= (x — %)dx + (y — y) dy + z dz
- n' [x (y - y) - y (x - £)] dt.
Hence from the equations of motion
2 fdx d 2 x dy d 2 y dz d 2 z\
\dt dt 2 dt dt 2 dt dtV
d?y d 2 x\
c , ( d 2 y d 2 x
— 2 n x — y
V dt 2 J dt 2
fir „ f dx dy dz\
= -7 2 { x di + ydt +z dt<
*{<—+ + *
2 n' {®(y-rj)-y(x- f)}
dz)
dt)
C. VIII.
65