Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 8)

548 
[549 
549. 
NOTE ON THE MAXIMA OF CERTAIN FACTORIAL FUNCTIONS. 
[From the Messenger of Mathematics, vol. II. (1873), pp. 129, 130.] 
I CONSIDER the functions 
y 2 -x{x- 1), 
y 2 = x(x-\) {x- 1), 
y 3 = x{x - f) (x - (x - 
(*-Î)(*!) (a-i). 
Attending only to the absolute values, disregarding the signs, y n has n maxima, 
viz. if n be odd, = 2p -f1 suppose, these are 
V V V V V V 
* 1> J 2> ••'> J- p> -* p+li -Ip,'" J. 1, 
where Y p+1 corresponds to the value x = \, and Y lt Y. 2) ..., Y p to values of x between 
0 and —-—-=r, ^ ^ and ¿r — , ..., £—i- and —^ -- . 
2p + 1 2p + 1 2p + 1 2p + 1 2p + l 
But if n be even, = 2p suppose, then the maxima are 
Y Y V V V 
where F 1} F 2 ,..., Y p correspond to values of x between 
0 and -xr- , ¿r— and ~, ..., — and 4. 
2p 2p 2p 2p 1
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.