Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 8)

489] 
AND THE (2, 2) CORRESPONDENCE OF POINTS ON A CONIC. 
17 
Now starting from the differential equation 
dx _ + dy 
V{(a, b, c, d, e\x, l) 4 } ~ V{0, k c, d, e\y> l) 4 } ’ 
the integral equation is known to be 
b, c, d, e\x, l) 4 } — b, c, d, e\y, l) 4 } 
x-y 
where 6 is the constant of integration. Writing, for 
Y= (a, b, c, d, e\y, l) 4 , this is 
= a (x + y) 2 + 46 (x + y) + 6 6, 
shortness, X = (a, b, c, d, e$jx, l) 4 , 
X + Y — 2 *J(XY) = a (x 2 — y 2 ) 2 +4b(x — y) (x 2 — y 2 ) + 6 8 (x — y) 2 ; 
or, what is the same thing, 
a (¿c 4 + 3/ 4 ) — 2 \/ (XY) = a(x 2 — y 2 ) 2 + 4b (x — y) (x 2 — y 2 ) + 66 (x — y) 2 , 
+ 46 (x 3 + y 3 ) 
+ 6c (x 2 + 3/ 2 ) 
+ 4# (» + 3/) 
+ 2a, 
viz. this gives 
V(IF)= aafy 2 
+ 26 (¿r 2 ?/ + ¿t'3/ 2 ) 
+ 3c (x' 2 + 3/ 2 ) 
+ 3# (# — 3/) 2 
+ 2d (x + y) 
+ e, 
and, rationalising, the integral equation becomes 
— 6adx 2 y 2 
— 4 adxy(x + y) 
— ae(x + y) 2 
+ 4 b 2 x 2 y 2 
+ 12bcxy (x + y) — 12bdxy (x + 3/) 
— 8bdxy 
— Ybe (x + y) 
+ 9c 2 (x + y) 2 — 18c# (x 2 + y 2 ) 
— 12c# (x + y) 
+ 9 6 2 (x — y) 2 — 12dd (x + y)— 6ed + 4# 2 = 0; 
C. VIII. 
3
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.