Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 9)

578] A MEMOIR ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. 119 
Equation-systems for the cases n = 3, 5, 7, 9, 11. Art. Nos. 8 to 10. 
8. u — 3, cubic transformation. h = u 4 , fl = — 2 (here and in the other cases). 
P = a, Q = /3. The condition here is 
kWar + (2a/3 + /3-) = fl/j {(« 2 + 2 a/3) + ¡3'\x 2 }, 
and the system of equations thus is 
/¿a 2 = fl/3 2 , 
2a/3 + /3 2 = fl& (a 2 + 2a ft), 
and similarly in the other cases; for these it will be enough to write down the 
equation-systems. 
n = 5, quintic transformation. 
P = a + y# 2 , Q = /3. 
Pa 2 = fly 2 , 
2ay + 2 a/3 + /3 2 = i1 (2ay + 2/3y + /3 2 ), 
y 2 + 2/3y = fl& 2 (a 2 + 2a /3). 
% = 7, septic transformation. 
P = a + y# 2 , Q = /3 + Sx 2 . 
Pol 2 = f!8 2 , 
k (2ay + 2a/3 4- /3 2 ) = fl (y 2 4 2y8 + 2/38), 
y 2 + 2/3y + 2a8 + 2/38 = fl& (2ay 4- 2/3y + 2a8 4- /3 2 ), 
8 2 4- 2yS = flP (a 2 + 2a/3). 
7i = 9, enneadic transformation. 
P = a 4- y« 2 + eP, Q = /3 + Sx 2 . 
Pa 2 = fie 2 , 
P (2ay + 2a/3 4- /3 2 ) = fl (2ye 4- 2e8 + 8 2 ), 
2ae + y 2 + 2a8 + 2y/3 4 2/38 = fl (2ae 4 y 2 4 2yS + 2e£ + 2/38), 
2ye + 2y8 + 2e/3 + 8 2 = flA; 2 (2ay + 2a8 + 2y¡3 + /3 2 ), 
e 2 + 28e = flAr* (a 2 + 2a/3). 
7i = ll, endecadic transformation. 
P = a + yx 2 + ex A , Q = /3 +Sx 2 + 
Pol 2 = fl£ 2 , 
A,- 3 (2ay + 2a/3 + /3 2 ) = fl (e 2 + 2e^+ 28£), 
A; (2ae + y 2 4- 2a8 + 2y/3 + 2/38) = fl (2ye + 2y£ + 2e8 + 2/38 + 8 2 ), 
2ye + 2a£+ 2y8 + 2e/3 + 2/3£+ 8 2 = fl/j (2ae + y 2 + 2af + 2y8 + 2e/3 + 2/38), 
e 2 + 2y£ + 2e8 + 28£= fl P (2ay + 2a8 + 2y/3 + /3 2 ), 
2e£ + ? = HP (a 2 + 2a/3). 
And so on.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.