[607
positive
^,-1:
v-9
point
= -q.
)n the
(1848),
>0 (the
ìemoir),
ications
5—803,
was in
of in
and i),
607]
A MEMOIR ON PREPOTENTIALS.
421
viz. the right-hand side is here equal to the left-hand side or is = 0, according as
0$*
7^+...+t- <1 or >1. V is consequently obtained by multiplying the right-hand side
by dx... dz and integrating from — oo to + oo for each variable.
Hence, changing the order of the integration,
V = —^——\ iff du, dv dr v* s+q cbu. il,
7T T (4a 4- a) Jo Jo Jo
where
fi = J dx ... dz cos - e 2 T — j-% - • . • —jr 2 + t {(a — x) 2 + ... 4 (c — z) 2 } )v + % (|s + q) ir\.
Now
if
jr 2 + t (a — x) 2 = £ 2 + 1+ p T
ra? z 2 y, 1 + k 2 T tc
, .., n + r (c-z)- = — rr -? +
h 2
1 + h 2 T ’
f = x —
f 2 Td
1 +f 2 T ’
h 2 TC
1 4- Ji 2 t '
158. Substituting, and integrating with respect to £, between the limits — go
+ qo , we have
n =
(/... A) 774 s
{(1 +/V) ... (1 +A 2 r)}M 8
cos w — e-T —
1 .
a-T
(TT
1 + _/ 2 t ” * 1 + 1i 2 t
)^+2^7rJ;
or, what is the same thing, writing - in place of r, this is
v
il =
that is, writing
we have
(f ... A) 7T^ S $
{(/*+ $)••• (A 2 4-£)}*^ s
COS -u m —
/ 2 -M *** A 2 4- £
-f)«+ !«*■};
a 2 c 2 e 2
<r= /íTí + ••• +IГT ' + ■'•
TT^- 1 (/... A) f 1
r(*« + g)
m c
0
dii dv d£
li 2 +t t
t~ q ~ 1 v ? cos {(ii — cr) v 4- ^q7r] (f>u
{(t +/»)...(* + A*»i ;
or, writing 7r^' _1 = - (r^-)*, this is
= f dt. t~ q ~ x {(£ + / 2 ) ... (t + A 2 )}“* -if dudv. v q cos {(w — a) v + ^g"7r} </m.
I(is + O)jo TT J oJ 0
r (hs + q)
159. Boole writes
1 ri r°° / d \ q
- J | du dv v q cos {(u — <t) v 4- %qir] <j>u = </> (<r);
viz. starting from Fourier’s theorem,
— f j dudv cos(u — a) v . <fiu = <j> (<r),
7TJ o J 0