50
ON THE TRANSFORMATION OF THE EQUATION OF A
[566
566]
We find
-Pai + Qßi + -Ryi = («>•• •) («1, ßi> Yi) 2 > =0,
Pi
Pa 2 + Q/3 2 -F Ry 2 = (a, ...) (a 1} ft, yj) (a 2 , ft, 7 2 ) (a ia2 + ftft + YiYs)» = °>
Pi
and thence
P Q ■ R = /SjYs /ftyi • Yi a 2 Ya^i • a. 2 ft
= a : /3 : y ,
or say
p, g, P = M, №
we have thus the equations
Pi
and joining hereto
h
■ 3 )
( a i, ßi, Yi) ~
b-
h / )
II
£
«
f
■ -s
(«1, A, Vi) = 8fi,
(A,
B, C)(a 1} ft, Yi) = 0,
ain the equation
1
Pi’
h ,
9 > A
= 0,
h
b ~b
Pi
f > b
9
f i c
G
Pi
A
B ,
G , 0
1
Pi
= (a,...)(a 2
ft) Y2) 2 »
and in like manner writing
we have the same equation for p 2 \ wherefore p 1} p 2 are the roots of the quadric equation
1
a--, h , g , A
r
h , b-~ f , B
r
g > f , c — ^, c
'A , B , G ,
= 0.
Moreo\
determinani
say, a 1} ft,
question; a
But we
that is,
and in the
Hence
where it w:
terms (X, ]
in 8x, 8y, 8
coefficients
radii of cur
values of tl
terms in X
Z is of the
in Z 2 of the
0