Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 10)

654] 
7 9 
654. 
ON CERTAIN OCTIC SURFACES. 
[From the Quarterly Journal of Pure and Applied Mathematics, vol. xiv. (1877), 
pp. 249—264.] 
I. Consider the torse generated by the tangents of the quadriquadric curve, the 
intersection of the two quadric surfaces 
ax- + b y- + c z- + dw 2 = 0, 
a 'a? + h'y- + cz 2 + d 'w 2 = 0 ; 
then, writing 
be' — b'c = a!, ad' — a'd = f, 
ca' —c'a —U, bd' — b'd = g, 
ab' — a'b = c', cd' — c'd = h\ 
and therefore 
af + b'g' + c'hf = 0, 
the equation of the torse, writing for greater convenience (a, b, c, f g, h) in place of 
(a', b', c', /', g', h'), but understanding these letters as signifying the accented letters 
(a', b', c', /', g', h'), is 
af-y^ + b i g 2 z i x i + c 4 h 2 afy i 
+ arf i x i tu i + b 2 g 4 yhv 4 + tffczho 4 
+ 2b 2 c 2 ghx i y 2 z 2 — 2c 2 f 2 ahx l y 2 w 2 + 2 b 2 f 2 agx^z 2 w 2 
+ 2c 2 a 2 hfy i z 2 x i — 2a 2 g 2 bfy 4 z 2 w 2 + 2c 2 g 2 bhfx?w 2 
+ 2a 2 b 2 fgz 4 x 2 y 2 — 2b 2 h 2 cgz i xhu 2 + 2a 2 h 2 cfz i y 2 w 2 
— 2bcg 2 h 2 w i y 2 z 2 — 2cahf 2 iv i z 2 x 2 — 2dbf 2 g 2 w i x 2 y 2 
+ 2 {bg — ch) (cli — af) {af— bg) xry 2 z 2 w 2 = 0.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.