Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 10)

82 ON CERTAIN OCTIC SURFACES. [654 
If for a moment we write af= a 3 , bg = {3 3 , ch — y 3 , and, therefore, a+ /3 + 7 = 0; then 
for the twofold root, we have A : g : v = a : /3 : 7, and consequently 
k = a} (7 — /3) + /3 2 (a - 7) + 7 2 (¿0 — a) 
= (a-/3)(/3- 7) (7 - a), 
that is, 
* = {(«/)* - %) 4 } K%) A “ №"} {(ch) 3 - (a/)*}, 
which agrees with the result in regard to the octic torse. 
If in the octic equation we write (x, y, z, w) in place of (x\ y 2 , z 2 , w 2 ), then we 
have the quartic equation 
a 2 y 2 z 2 + b 2 z 2 x 2 + c 2 x 2 y 2 
+ f 2 x 2 w 2 + g 2 y 2 w 2 + h 2 z 2 w 2 
+ 2 bcx 2 yz — 2cfx 2 yw + 2 bfx 2 zw 
+ 2cay 2 zx — 2agy 2 zw + 2 cgy 2 xw 
+ 2 abz 2 xy — 2bhz 2 xw + 2 ahz 2 yiu 
— 2 gliw 2 yz — 2hfiu 2 zx — 2fgw 2 xy 
+ 2 kxyzw = 0, 
which is the equation of a quartic surface touched by the planes x = 0, y= 0, s=0, 
w = 0, in the four conics 
x —0, . hzw — gwy + ayz = 0, 
y = 0, — hzw . + fiux + bzx = 0, 
z =0, gyw — fwx . + cxy = 0, 
w = 0, — ayz — bzx — cxy . = 0, 
respectively. 
II. The octic surface 
U = b 2 c 2 f 2 af + c 2 a 2 g 2 y 8 + a 2 b 2 h 2 z s + f 2 g 2 h 2 w s 
— 2d 2 eg (bg — ch) y 8 z 2 — 2b 2 ah (ch — af) z 6 x 2 — 2c 2 bf (af — bg) x (i y 2 
+ 2a 2 bh ( „ ) y 2 z 6 + 2b 2 cf ( „ ) 2V 5 + 2c 2 ag ( „ ) ¿r 2 y fl 
— 2/ 2 6c ( „ ) x 6 w 2 — 2g 2 ca ( „ ) yhu 2 — 2h 2 ab ( „ ) 2 6 w 2 
+ 2f 2 gh( „ )x 2 w 6 +2g 2 hf( „ ) y 2 w 6 + 2h 2 fg ( „ ) 
+ / 2 (6 2 ^ 2 + c 2 /i 2 — 4>bgch) w i x i + y 2 (c 2 ^ 2 + ay 2 — 4<chaf) w 4 y 4 + h 2 (a 2 f 2 + 6 2 // 2 — 4abfg) w i z 4 
+ a 2 ( 
) y*z* + b 2 ( 
) z*x 4 + c 2 ( 
)x 4 y 4 
— 2gh (begh — a 2 f 2 — Zafbg — 
2 afeh) iv 4 y 2 z 2 
- %bh ( 
) z 4 x 2 w 2 
+ 2cg ( 
) y 4 x 2 w 2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.