Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 10)

[654 
86 
ON CERTAIN OCTIC SURFACES. 
it is easy to find 
that is, we have 
where 
t № 
x A h 2 (k — l) 8 ’ 
$ ^F 1) ’ U = 11 K/* + 9) ( ke V ~ ^ + h (k - If 0V], 
(bk 2 6 2 — a) (6y — #) 2 + /i (k — l) 3 0 2 w 2 = 0. 
If for greater convenience we write #=-</>, then this formula becomes 
-, u = n [<AV+02/ ! ) (h -1 > a +* - i) s m, 
where 
(bk 2 x 2 (f> 2 — ay 2 ) (</> — l) 2 + h (k — l) 2 w 2 <f> 2 = 0, 
or, what is the same thing, 
h(k— l) 2 w 2 
bk 2 x 2 
(f> 2 = 0. 
Suppose that the terms in U which contain z 2 are = Sz 2 ; then we have 
t h(k jJ y ® = 201-11' (fx^ + gf) m - 1)>, 
or, what is the same thing, 
/)4/*4 /y>4 
0 = A(F~i7 ^ ^ 2ir (Z^ 2 + #Z) (&</> - l) 2 , 
where IT' refers to the remaining three roots <£», <£ :; , </> 4 ; this may also be written 
<H> = 
b 4 k A x A 
h(k — l) 6 y* 
n (fx 2 <fr + gy 2 ) (kef) - l) 2 .2 
P 
(fx 2 (f) 2 + gy 2 ) (k<f) - l) 2 ‘ 
Hence, observing that we have identically 
Z-6lv) - 1> S + P = tt~ *.) (■#■ - « «- - «(■#> - 
and writing <t> = ± iy = {i = V(— 1) as usual), we find 
æ \(J) to 
n {<f)x V(/) ± iy V<Z)} = h - k hla —~ [c [x V(/) ± iy >J(g)Yfgw*\ y\ 
U(kef)-1) 
whence, writing for shortness 
bk 2 
(k — l) 2 
~lx 2 ^ ~ ^ + hw ^ 
A = [o{x V(Z) + iy V(£) 2 } -fgw 2 ] [c [x V(/) - iy s/(gf} -fgw 2 l 
= (?f 2 o& + c 2 <7 2 ?/ 4 + / 2 gHv 4 + 2cfg 2 y 2 w 2 — 2cf 2 gx 2 w 2 + 2 c 2 fgx 2 y 2 ,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.