[654
654]
ON CERTAIN OCTIC SURFACES.
87
we find
TT / A* . 2 , t>\ A 2 (A - 1 y . ,
n + gy*) = Ay\
Il (kef) — l) 2 = "'^-¿2^ (Aæ 2 — ay 2 + hw 2 ) ~ ,
a?
and thence
n (fx 2 ef 2 + gy-) (kef) - 1 ) 2 = - ^ A (A# 2 - ay 2 + Aw 2 ) 2 ^,
and consequently
© = h {k — l) 2 A (bx 2 — ay 2 + Aw 2 ) 2 . S \ . , — .
y ' CW + ^Xty-i) 1
Hence, writing
4> 2
4 5
+ — i +
a
D
(fiW + 9tf) № - 1) ! (H - 1)’ T k-f, - 1 ' r a* V(/) + ¿2/ VO) + ¿0 V(7) ty VO) ’
we may calculate separately the terms
and
The first of these is
V i A ^ B
)(kef> — l) 2 A kef) — lj ’
(
G
+ •
D
{X(f> V(/) + iy f(g) x<f) V(/) - iy f(g)j '
1
(A — l) 2 (fx 2 + k?gy) 2 (bx 2 — ay 1 + Aw 2 ) 2 y> ’
if for shortness
y, w] 6 = (fa? + A% 2 ) [4 {(2 - k) bx 2 - ay 2 + A (1 - A) w 2 } 2
— 2 (A« 2 — ow/ 2 + Aw 2 ) {(6 — 6k + A 2 ) A« 2 — ay 2 + A (1 — A) 2 w 2 }]
the second is
if for shortness
+ 4A 2 (A — 1) gy 2 (bx 2 — ay 2 + Aw 2 ) {(2 — A) A« 2 — ay 2 + A (1 — A) w 2 }
2
(A — l) 2 (yir 2 + k' 2 gy 2 ) 2 A
(«» y, w )\
(x, y, w) 6 = {(fx 2 - k 2 gy 2 ) (cfx 2 - egy 2 —fgvfi) - ^ckfgxf 2 }
x {fgbk 2 x 2 + [2cA (A — l) 2 + a/] gry 2 + fgh (A — l) 2 w 2 }
+ 2 {A 2 A$r — cA (A — l) 2 } fgx % y 2 {c (A + 1) (/¿c 2 — A$q/ 2 ) — kfgw 2 } ;
and hence
which must be
In partial
0 = (fa? + Bgy 2 ) 2 & y> + 2 ( bx * ~ ay2 + ^ w2 ) 2 (®» V’ W ) 6 1>
a rational and integral function of (x, y, w).
verification of this, observe that, because U contains the terms
2b 2 cf(ch — of) xPz 2 + 2Glxhfz 2 w 2 ,