662] WITH A 16-NODAL QUARTIC SURFACE. 165
We have therefore
G — D = (c — d) [xx'abef ];
and in like manner we obtain the equations
B — G = (b — c) [ccx'adef], A — JD = (a — d) [cox'beef],
G — A = (c — a) [xx'bdef], B — D = {b — d) [xxcaef],
A — B =(a — b) [xx'cdef ], G — D = (c — d) [xx'abef].
It is now easy to form the system of formulae
E
F
A
B
G
D
ae. af. bed
—be. bf. eda
+ ce . cf. dab
- de . df. abc
= 0
ad. bf. cf
— ad.be .ce
+ p f
- <f
= 0
bd .cf. af
— bd. ce .ae
+ e /
~ <f
= 0
cd . af. bf
— cd. ae. be
+ «/
~ *f
= 0
be . af. elf
— be. ae. de
+ f
~ef
= 0
ca . bf. df
— ca.be .de
- <f
+ f
= 0
ab .cf. df
— ab .ce.de
+ e/
~ <f
-0
— af. bed
+ be .cd
+ ce. db
+ de .be
= 0
— bf. eda
+ ae. cd
+ ce .da
+ de. ac
= 0
— cf. dab
+ ae .bd
+ be. da
+ de. ab
= 0
— df. abc
+ ae .be
+ be. ca
+ ce. ab
= 0
— ae . bed
+ bf. cd
+ cf. db
+ df. be
= 0
— be . eda
+ af. cd
-
+ cf. da
+ df. ac
= 0
— ce . dab
+ af. bd
+ bf. da
+ df. ab
-0
— df. abc
+ af. be
+ bf. ca
+ cf. ab
-o,
where for shortness ab, ac, etc., are written to denote a — b, a — c, etc. ; also abc, etc.,
to denote (6 - c) (c - a) (a - b), etc.: the equations contain all of them only the
differences of A, B, G, D; thus the first equation is equivalent to
ae. af. bed {A — D) — be . bf. ede (B — D) + ce. cf. dab (C — D) = 0,
and so in other cases.
Cambridge, 14 March, 1877.