Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 10)

242 
ON THE BICIRCULAR QUARTIC. 
[667 
giving the four sets each of six equations 
a 2 +b 2 -c 2 =-1, 
a' 2 + 6' 2 - c' 2 = 4 1, 
a "2 + y , 2_ c " 2= + i ( 
- a 2 4- a' 2 + a" 2 = 4 1, 
- 6 2 4&' 2 4 6" 2 =4l, 
- c 2 4 c' 2 4c" 2 =-l, 
(0 4 /) a 2 4(0 4 0)6 2 -2a/61+fac 
{0+f)a' 2 4(0 4 0)6' 2 — 2 a /0 4/a'c' 
a'a" 4 b'b" - c'c" = 0, 
a"a 4 6"6 - c"c = 0, 
aa' 4 66' — cc' = 0, 
-6c 46V +6"c" = 0, 
— ca 4- c'a' 4- c"a" = 0, 
— a6 4 a'b' 4- a"6" = 0, 
— 2/3 /0 4- g be 
— 2/3 /0 + g b'c 
— 2/3 /0"40 b"c" 
4 kc 2 = #i 4 0, 
4&c' 2 = — # 2 4#, 
4" kc” 2 = — 0 3 40, 
(0 + /) a" 2 4- (0 4 g) 6'' 2 - 2 a \/d 4 /a"c 
(0 4/) a'a" + (6+g) b'b" - a /04/(a'c" 4 a"c') - .3 /040 {b'c" 4 6"c') + ke'e" = 0, 
(0 4 /) a"a + (0 4 g) b"b — a /0 4 f(a"c 4 ac") — /8/0 40 (b"c 4 be" ) 4 kc"c = 0, 
(0 4 f) aa' 4 {0 4 g) 66' — a /0 4/(ac' 4a'c)— /3/0 4 0 (6c' 4 6'c ) 4 kcc' = 0, 
(0! — 0) a 2 — (0 2 — 0) a' 2 — (0 3 - 0) a," 2 =0 4/ or say (0j 4/) a 2 — (0., 4/) a' 2 —(0 3 4/)a" 2 =0, 
(^ - 0) 6 2 - (0 2 - 0) 6' 2 - (03 - 0) 6" 2 = 040, „ (0! 40) 6 2 - (0 2 4 g) 6' 2 —(0 3 40 )6" 2 =0, 
(0 1 -0)c 2 -(0 2 -0)c' 2 -(0 3 -0)c" 2 = ^, „ 0jC 2 - 0 2 c' 2 - 0 3 c" 2 =¿40, 
- (0! - 0) 6c 4 (0 2 - 0) 6'c' 4 (03 - 0) 6"c" = - /3/0 4 0, 
- (0 X - 0) ca4 (0 2 - 0) c'a' 4 (0 8 - 0) c"a"= - a /04/ 
- (0, - 0) a64 (0 2 - 0) a'b' 4 (0 3 -0) a"6"= 0 ; 
all which formulae are in fact satisfied by the foregoing values of the expressions 
a 2 , 6 2 , a' 2 , &c. 
33. We then have 
da) =■ 
dT 
c 4 c' cos T 4 c" sin T ’ 
the radical which multiplies dw being 
c 4 c' cos T 4 c" sin T ^ “ 6,2 cos ‘ 2 T ~ 6 * sin2 T > 
the differential becomes 
dT /0 X — 0 2 cos 2 T — 0 3 sin 2 T 
that is, 
cos 2 to sin 2 to 
./4 0 04 0 
4 c' cos T 4 c" sin T) 2 /© 
d ; T /0i - 0, cos 2 T -0 3 sin 2 T 
^ (a 4 a' cos i 7 4 a" sin /) 2 4 ^ (6 4 6' cos T4 6"sin 7 1 ) 2 ! /© 
1 P . /1 \U/ T" U/ Vy'J’O _x p L(/ oxn x / t 7» 
(/+ 0 0 4 0 
The denominator could, of course, be reduced to the form (*$1, cos T, sin T) 2 -, but 
the actual form seems preferable, inasmuch as it puts in evidence the linear factors 
(a 4 a' cos T 4 a" sin T) 4 . (646' cos T 4 6" sin T), 
//4 0 /0 4 0 
and there seems to be no advantage in further reducing the integral.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.