Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 10)

250 
NOTE ON MR Muir’s SOLUTION OE A “ PROBLEM OF ARRANGEMENT.” [670 
where u' denotes ^, we have 
iC 3 
n — u 
(1—a?) 2 1—sc 
1 
1 — X‘ 
+ (u 3 + u 4 x + u 5 x 2 + ...) (2a? + 6a? 2 + 12a? 3 + 18a? 4 + ...) 
+ u (2a? + 6a? 2 + 12a? 3 + 18a? 4 +...); 
or, what is the same thing, 
u — u 
, + u 
2a? 
2a? 4 
that is, 
(1 — a?) 2 — 1 — a? 2 |(1 — a?) 3 (1 - x) 3 (1+ a?)j ’ 
2a? 4 
a? 2 , 1 
u — u = 
(1 — a?) 3 ~ (1 — a?) 3 (1 + a?)) (1 - a;) 2 1 - a? 2 * 
This equation may be simplified: write 
u = 
then 
and the equation is 
1 — a? 2 ^ 2 1+a? 
1 - a: 2 
a? 4 
'4 2 
a? 4 a? 2 > 
1 — a? 2 , 
4 1 2 
+ 
a; 4 a? (1 + a?) 2 (1 - a;) 2 a? (1 - a?) 2 a? (1 - a?) 2 ) ^ (1+a?) a? 2 1 
Q + n 
1+a? 
Q' = 
,.2 ’ 
that is, 
2 2,2 
+ «TTi ~v» + 
2 1 q+^ l± ^«'= 1 
a? 4 + a? 2 a? (1 - a?) 2 a? 2 (1 - a?) 2 a? (1 - a?) 2 (1 - a?) 2 ) ^ (l-a?)a? 2 ^ 1-a? 2 ’ 
viz. this is 
L(l^ + (J^_2 + 2 + 2_ 2 j 1-^ 
) a; 4 a? 2 a, 13 a? 2 a? j a? 2 1+a? 
that is, 
I 
or 
or finally, 
giving 
and thence 
1 — a? 2 n 1 — a? 
1 Tx’ 
(1 ~ ^ Q , 1 ~ Q' = 1 . 
a^ a? ^ 1 + a?’ 
a; 2 ) ^ — (1 + a?) 2 ’ 
= A* + Dj-*.. * x+1 * 
Q = e 
(a? + l) 2 
cia?, 
_ e + + i) f «* + + s) 
(a? + l) 2 
which is the value of the generating function 
u = u 3 + u 4 x + u 5 x 2 + &c. 
dx,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.