288
FORMULA RELATING TO THE RIGHT LINE.
[682
which last equations may be written
A a + Bb + Cc = 0,
Aa! + Bb' + Gc' = 0,
giving
or, if we write
and assume, as is convenient,
then
A, B, G =
A : B : G = bc' — b'c : ca' — c'a : ab' — a'b,
6 = aa' + bb' + cc',
A 2 + B 2 + G 2 = 1,
be' — b'c ca' — c'a ab' — a'b
V(i-0 2 )’ V(l-0 2 )’ V(i-0 2 )’
where 6, = cosine-inclination, = aa' + bb' + cc'.
Hence, shortest distance — D — D'
= A (a — a.') + B (/3 — /3') + G (y — 7')
={( hc> - h ' c ) ( a - °0 + ( ca ' - c ' a ) (z 3 - &) + i ah ' - a ' b )1
1
V(l-0 2 )
l
{a' (c/3 — 67) + b' (ay — ca) + c' (ba — a/3)
+ a (c'yQ'- b'y') + b (ay - c'a) + c (b'a - a'ff)}
— //i ¿te\( a f / + b 9'+ c h' + a f+ b '9+ c 'h), =S suppose.
V(i - v)
The six coordinates of the line of shortest distance are A, B, G, F, G, H, where
A, B, G denote as before, and F, G, H are to be determined.
Since the line meets each of the given lines, we have
Af + Bg + Ch + Fa + Gb + He = 0,
Af + Bg' + Gh! + Fa' + Gb' + He' = 0,
and we have also
FA+GB+HC= 0,
which equations give F, G, H. Multiplying the first equation by b'G—c'B, the second
by Be — Gb, and the third by be’ — b'c, we find
(b'G-c'B) (Af+ Bg + Ch) + (Be - Cb) (Af + Bg' + Gh') + F
Here
a , b , c
a', b', c'
A, B, G
= 0.
b'G — c'B =
V(1 -0>)
1
V(l -6*)
l
V(1 -0 2 )
[b' (ab' — a'b) — d (ca' — c'a)}
[a (a' 2 + b' 2 + c' 2 ) — a' (aa' + bb' + cc')}
(a — a'd),