[638
26 ON A ^-FORMULA LEADING TO AN EXPRESSION FOR E x .
so that
qX' = q + 3 q 3 + 6q e + lOg 10 + &c.,
then
X + 8qX' = 1 + 9q + 2 5q s + 49 q 6 + 81^ 10 + &c.,
so that the right-hand side of (B) is
X + 8qX' 1 0 X'
X ’ 1 + 8q X •
But {Fund. Nova, p. 185, Ges. Werke, t. i., p. 237),
g _ 1 — q*. 1 — q 4 .1 — q 6 ...
so that
I-# . 1 — 2 3 • 1 — 2* ... ’
X' - 22 _ 42 s _ 6q 5
X 1 — 2 2 1 — 2 4 1 — 2 ti
• + — + Jf +AA +
1-2 1 - 2 3 1 - 2 5
And the equation (B) intended to be proved thus becomes
1+ sifi* + *£-_ AA + .J
(1 + 2 1+2“ 1 + 2* J
-16
= 1+82
1^5_ + ®2L+ .. '
(1 — 2 2 1 — 2 4 1 — 2^
( — 2q 4<q 3 Qq 5
(1 — 2 2 1 — q 4 1 — 2 6
1 32 2 5q 4
+ ~, ...
1 — 2 1 — 2 3 1 — 2 5
viz. omitting the terms unity, dividing by 82, and transposing, this is
1
1 + 2 +
1 + 2 2
1 + 2* 1
, 2
Asl +
6q 2
1 -2 2
i-2 4
1 -2 6
2 2
+ T—^-„ +
4 2 3
i « +
1-2-
1 — q 4
1 — 2 6
1
Sq 2
oq 4
! -2
1 — 2 3
1 - 2 s
The second and third lines unite together, and the equation becomes
1^2 2 32 2 42 3
+
1+2 I + 2 2 1 + 2 3 1+2 4
2 42 62 2 82 3
1 — 2 1 + 2 2 1 — 2 s 1 + 2 4 '
1 _ Sq 2 _ bq 4 _ 7q 6
1-2 I-2 3 1-2 5 1~2 7