Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 10)

558 
A MEMOIR ON THE SINGLE AND DOUBLE THETA-FUNCTIONS. 
[704 
and hence 
P = (x+dx + ^d 2 x) (x — dx -f £d 2 x), = x- + [xd-x — (?te) 2 }, 
and similarly for Q, R, S. Moreover, observing that x' and z' are even functions, 
y' and w' are odd functions, of u', v, we have 
x', y, z, iv =x, + ^d 2 xo, 0y o , z 0 + %d%, dw 0 , 
where d 2 x 0 , dy 0 , &c., are what dfx, dy, &c., become on writing therein u = 0, v = 0; 
dy 0 , dw 0 are of course linear functions, 3 2 ^ 0 , d 2 z, quadric functions of u and v. The 
values of x'-, y'-, z 2 , iv' 2 are thus x, 2 + x 0 d 2 x 0 , (0y o ) 2 , zf + z 0 d 2 z 0 , (dw 0 ) 2 ; and we have 
œ 0 d 2 æ 0 
%«) 2 
z,d-z 0 
(0W O ) 2 
x 2 x' 2 
- y-y' 2 
+ z 2 z' 2 
— w 2 w' 2 = xfx 2 
+ Z 2 Z 0 2 
+ X 2 
-y 2 
+ z 2 
— vf, 
x 2 y' 2 
-y 2 x' 2 
+ z 2 w' 2 
— w 2 z' 2 = —y 2 x 0 2 
- w‘% 2 
-y- 
+ X 2 
— vf 
fz 2 , 
x 2 z' 2 
— y 2 w' 2 
+ z 2 x’ 2 
— W 2 y 2 = Z 2 xf 
+ x 2 zf 
+ z 2 
— vf 
+ X 2 
-y-> 
x 2 w’ 2 
- y 2 z' 2 
4- z 2 y 2 
— W 2 x 2 = — W 2 X 0 2 
-yW 
— w 2 
+ z 2 
~y~ 
+ of. 
135. On substituting these values, the constant terms (or terms independent of 
u, v) disappear of themselves; and the equations, transposing the second and third 
of them, become 
x 0 d 2 x 0 (dy 0 ) 2 z 0 d% (dw 0 ) 2 
(z 0 4 -x 0 4 ){xd 2 x ~(dx) 2 }= (—x 0 2 x 2 + z 0 2 z 2 ) +( x 0 2 y 2 —z 0 2 w 2 ) +(—x 0 2 z 2 +z 0 2 x 2 ) + ( xfvf-zfy 2 ), 
» [yd-y -(3y) 2 }= -( x ti y-z 0 2 w 2 ) -(-x 0 2 of+z 0 2 z 2 ) -( x 0 2 vf z 2 y 2 ) -(-x 0 2 z 2 +z 0 2 x 2 ), 
„ {zd 2 z ~(dz) 2 }= (—x 0 2 z 2 +z 0 2 x 2 ) +( x 2 vf z 2 y 2 ) +(-x 0 2 x 2 +z 0 2 z 2 ) +( x 0 2 y 2 -z 0 2 w-), 
„ {wd 2 w-(dw) 2 } = -( XqW 2 z 2 y 2 ) -(-x 2 z 2 + z 2 xr) -( x 0 2 y 2 -z 0 2 w 2 ) -(-x 0 2 of +z 0 2 z 2 ), 
where it will be recollected that x, y, z, w mean S- 4 , %, S- 8 , ^- n (u); x 0 is S- 4 (0), 
that is, c 4 , and z 0 is S- 8 (0), that is, c s . But the formulae contain also 
d 2 x 0 = (<?;", c 4 iv , c/$V, vf, dy, = (Cy, c" \u, v), 
d 2 z 0 =(c 8 '", c 8 iv , c 8 v $V, v') 2 , dw 0 = (Cn, c u "$V, v). 
The formulae may be written 
0$% 
(9c 7 ) 2 
c 8 0 2 c 8 
(0Cn) 2 
U U It 
{■ ^.0%-(0^) 2 } c 2 .^ 2 c 2 .^ 2 
c 2 . ^ ' c 2 . + 2 
c 2 . ' c 2 . ^ 2 
C 2 .^- 2 (f. + 2 
(c 8 4 -c 4 4 ){ 4 4 4 }= (-4 4 +8 8) 
+(4 7-8 11) 
+(—4 8 +8 4) 
+( 4 11 -8 7> 
„{ 7 7 7 ] = -( 4 7 -8 11) 
-(-4 4 +8 8) 
-( 4 11 -8 7) 
-(-4 8 +8 4), 
„{ 8 8 8 }= (-4 8 +8 4) 
+( 4 11 -8 7) 
+(—4 4 +8 8) 
+( 4 7-8 11), 
„ {11 11 11 }=-( 4 11 -8 7) 
—(—4 8 +8 4) 
-(4 7-8 11) 
—(—4 4 +8 8), 
where 0 2 c 4 , d 2 c 8 , dc 7f 0c u are written in place of 0 2 ir o , d%, dy 0 , dw 0 . There is of course 
a like system of equations for each of the Gopel tetrads.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.