Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 10)

[650 
650] 
ON A QUARTIC SURFACE WITH TWELVE NODES. 
61 
and also 
p ( YZ - X Vf + q (ZX - YVy + r (X V - Z W)= = 0. 
The more general equation 
(P> V, r, l, m, nJYZ + XW, ZX+YW, XY+ ZW) 2 = 0 
represents a quartic surface (octadic) having the 8 nodes 
(1, 0, 0, 0), (I, 1, 1, 1), 
(o, i, 0, 0), (1, T, 1, 1), 
(o, o, i, o), (i, i, t, i), 
(0, 0, 0, 1), (1, 1, 1, T). 
We have 
d x U = 
d Y U = 
ES. 
p. 
IF 5 +YZW 
p. 
YZ 2 +XZW 
q. 
YW 2 + YZW 
q- 
YW 2 + XZW 
(1877), 
r. 
ZW 2 + YZW 
r. 
YX 2 + XZW 
1 
2XYZ + W(Y 2 + Z 2 ) 
1. 
2XYW + Z(W 2 + X 2 ) 
m. 
2XYW+ Z (W 2 + Y 2 ) 
m. 
2 YZX + W(Z 2 + X 2 ) 
n. 
2XZW+ Y(W 2 + Z 2 ), 
n. 
2YZW + X(W 2 + Z 2 ), 
d z U = 
II 
p. 
Y 2 Z + XYW 
p. 
X 2 W +XYZ 
q- 
X 2 Z + XYW 
q- 
Y 2 W +XYZ 
ope of the 
r. 
W 2 Z +XYW 
r. 
Z 2 W +XYZ 
1. 
2ZXW+ Y(W 2 + X 2 ) 
1 
2WYZ + X (Y 2 + Z 2 ) 
m. 
2YZW + X (W 2 + Y 2 ) 
m. 
2WZX + Y (Z 2 +X 2 ) 
n. 
2 ZXY + W(X 2 +Y 2 ), 
n. 
2WXY + Z(X 2 + Y 2 ). 
Hence there will be a node 
1, I, I, 1, if p + q + r + 21- 2m - 2n = 0. 
I, 1, I, 1, ... p + q + r — 21 + 2m — 2n = 0, 
I, T, 1, 1, ... p + q + r-21 — 2m + 2n = 0, 
1,. 1, 1, 1, ... p + q + r+ 2Z + 2m + 2ii=0; 
or say there will be 
1 of these nodes \ip-\-q + r + 2l + 2m + 2n = 0, 
2 p + q + r + 2l=0, m + n = 0, 
3 p + q + r = 21 = — 2m = — 2n, 
4 p + q + r = 0, 1 = 0, m = 0, n = 0; 
result is
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.