&aT
sSSS¡l®íi?
ON A TORSE DEPENDING ON THE ELLIPTIC FUNCTIONS.
[653
z =
0X1'
and the equation becomes
or say
il' 2
il 2 — a 2 a 2 a 2
V(il 2 -a 2 )’
=^i-i
aadkl
= d0,
V(X1 2 — a 2 . il 4 — a 2 a 2 )
viz. this equation determines il as a function of 6, and we then have
ds = kldO,
dz = V(il 2 — a 2 ) dd,
x = a cos 0,
y = a sin 6,
equations which determine x, y, z, s as functions of the parameter 6, and give thus
the edge of regression of the torse in question.
It is clear that the formulae are very much simplified in the case a = a, where
the radius of absolute curvature a is equal to the radius a of the cylinder; but it
is worth while to develope the general case somewhat further.
Considering the elliptic functions sn u, cn u, dn u, to the modulus k (= k') = ,
assume
then
il =
*J(aa) dn u
k sn«’
_ V( aa ) cn u du
CtlL — ; .
k sn 2 u
il 2 -« 2 =
aa
and hence
il 4 — a?a* =
dd =
k 2 sn 2 u
aa
№ sn 2 u
a?tf
là sn 4 u
a-a 2
^dn 2 u—^№ sn 2 u^j ,
L 1 “i 1 +
(dn 4 u — kà sn 4 u),
a 2 a 2
ds =
j, — (1 — 2& 2 sn 2 w), = j
là sn 4 u v ' là sn 4 u
№ sn u du
v^l 1 _ Í 1
k V(aa) dn udu
cn 2 u,
\Z| l -( l+ “)* isn,M }
dz = k \J(aa) du.