Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Supplementary volume)

DIFFERENTIAL—DOSTOR. 
92 
system of, i, 366—9; Jacobi on theory, hi, 174; theorem of Jacobi on Pfaff’s problem, iv, 
359—63; singular solutions, iv, 426—7; transformation, iv, 574, v, 78—9; umbilici, v, 115—30; solu 
tion when algebraical, vn, 5—7; supposed new integration, vn, 36; note on one, vn, 354—6; 
pair in lunar theory, vn, 535—6, 537—40; integration by series, vm, 458—62; Euler’s, ix, 592— 
608; and theory of elliptic functions, x, 20 ; and sides of quadrangle, x, 33—5 ; theory of partial, 
x, 134—8; elliptic and single theta functions, x, 422—9; hypergeometric series, xi, 17—25 ; Abel’s 
theorem, xi, 27—8; new formulae for integration of Euler’s equation, xi, 68—9 ; mathematics and 
physics, xi, 449; connected with elliptic functions, xn, 30—2: Briot and Bouquet’s theory, xn, 
432—41; of circular functions, xn, 580; a diophantine relation, xn, 596—600; and construction of 
Milner’s lamp, xm, 3—5; Kummer’s, of third order, xm, 69—73; on a partial, xm, 358—61 ; 
Richelot’s integral of Euler’s, xm, 525—9 ; (see also Partial Differential Equations, Riccati, Schwarz, 
Singular Solutions). 
Differential Equations, Linear: invariants of one, xii, 390—3; general theory, xn, 394—403, 444—52, 
453—6 ; theory of decomposition, xii, 403—7. 
Differential Equations of First Order; theory of singular solutions, vm, 529—34, x, 19—24. 
Differential Invariants {see Invariants). 
Differential Operators: vn, 8. 
Differential Relations: of double theta-functions, x, 559—65. 
Differentiation: evaluation of definite integrals, i, 267—72, 587; formulae for, iv, 135—49; fractional, 
xi, 235—6. 
Dimensions in Geometry {see Geometry). 
Dimidiate: the term, xm, 119. 
Dimidiation: the term, xm, 122. 
Diophantine Differential Relation : xii, 596—600. 
Diptich : the term, xii, 596. 
Dirichlet, G. L. {see Lejeune-Dirichlet). 
Director, Nodal {see Nodal Director). 
Directrix: and scrolls, vn, 60; and the absolute, xm, 4S1—9, 501; kinematics of a plane, xm, 505—6. 
Discriminant: and invariant, i, 584; defined, ii, 176, iv, 603, vi, 466—7; of qualities, n, 320; the 
sign □, ii, 528; special, connected with curve, v, 163; of quintic, problem, v, 592; of binary 
quantic, vn, 303, ix, 16—7; example of a special, vm, 46—7; {see also Qualities). 
Discriminant Locus: the term, vi, 198. 
Displacement: the term in Abel’s theorem, xii, 110, 157—62. 
Distance: general theory of, ii, 561, 583—92, 604—6, v, 550; notion of, in analytical geometry, v, 
550 ; the term, vi, 497; angular, of two planets, vn, 377—9 ; Cayley and Klein on theory, vm, 
xxxvi—vii; general notion, vm, 31; Euclidian geometry, xi, 435—7; non-Euclidian geometry, xm, 
480—504; {see also Points). 
Distribution of Electricity : on spherical surfaces, iv, 92—8, 99—107, xi, 1—6. 
Distributively: the term, vi, 459. 
Disturbing Function : in lunar theory, hi, 293—308, 319—43 ; in rotation of solid body, hi, 486. 
Divisors : tables of, ix, 462—70. 
Dodecahedron : construction, iv, 82—3; axial systems, v, 531—9; as regular solid, x, 270—3; auto- 
morphic function for, xi, 169, 179—83, 184, 212—6. 
Donkin, W. F. : expansions in multiple sines, i, 583; differential equations, dynamical, hi, 191—7, 203—4 
344; transformation of trigonometric series, m, 567 ; attractions, hi, 567; a definite integral, iv, 29 
formulae for differentiation, iv, 135—49; central forces problem, iv, 521; spherical pendulum, iv, 
534, 536, 586; dynamical problems, iv, 547, 586; elimination of nodes in three bodies, iv, 551, 
586; rotation of solid body, iv, 578, 586. 
Dostor, G.: polyhedra, iv, 609.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.