GEOMETRICAL—GORDAN.
100
geodesics on quadric surface, vm, 164—70; formulae for position of point, vm, 170—4; ellipsoid
and skew hyperboloid, vm, 174—8, 188—99 ; tables, viii, 196—9.
Geometrical Construction: in optics, x, 28; of heptagon, x, 609.
Geometrical Representation; of elliptic functions, hi, 3; of imaginary variables, x, 316—23; of an
equation between two variables, xn, 104.
Geometry; of n dimensions, i, 55—62; reciprocity, I, 377—82; of quantics, ii, 222; of one and two
dimensions defined, ii, 561—2; of one dimension, n, 563—9, 583—96; of two dimensions, n, 569—83,
586—92; relations of, metrical and descriptive, n, 592; non-Euclidian and hyper-, n, 604—6,
vm, xxxiii—v, 409—13, xn, 220—38; Lobatschewsky’s imaginary, v, 471; problem of permutation,
v, 493—4; signification of elementary formula, v, 498—9; notion of absolute, v, 550; drawings in,
vi, 9; constructive, vn, 26—30; transformation, vn, 121—2; Cayley and Klein on metrical, vm,
xxxvi—vii; hyperbolic, elliptic and parabolic, vm, xxxvii; Cayley’s work in analytical, vm, xxxviii;
formulae relating to right line, x, 287—9; considerations on solar eclipse, x, 310—5; interpretation
of algebraic equations, x, 581; solid, xi, 224; Schubert’s numerative, xi, 281—93; Mill on, xi,
432—4; Euclidian, xi, 434—7; Cartesian, xi, 437—9; abstract, xi, 441—2; origin, xi, 445—8; in
Greece, xi, 446; evolution of descriptive, xi, 448—9 ; date of extensions in, xi, 449—51; plane and
solid, xi, 450—1; function in, xi, 522—3; interpretation of elliptic function formulae, xn, 107;
d’Alembert Carnot paradox, xn, 305—6; of the compass, xn, 314—7; algebra and logic, xn, 459;
{see also Hypergeometry: for General Theory, see Quantics, sixth memoir).
Geometry, Abstract, Memoir on: vi, 456—69, 596 ; introductory, vi, 456—7; space, vi, 456—7; general
explanations, vi, 457—62, 596 ; omal relation, order, vi, 463; parametric relations, vi, 463—4; quantics,
notations, etc., vi, 464—6; resultant, discriminant, vi, 466—7 ; consecutive points, tangent omals,
vi, 467—9.
Geometry, Analytical, in Ency. Brit.: xi, 546—82; introductory, xi, 546; Part I, pure analytical,
xi, 546—67; is descriptive, xi, 552—6; metrical theory, xi, 556—7 ; equations of right line and
circle—transformation of coordinates, xi, 558—61 ; the conics, xi, 561—4; tangent, normal, circle and
radius of curvature, xi, 564—5 ; coordinates, xi, 566—7 ; Part II, solid analytical geometry, intro
ductory, xi, 567—9; metrical theory, xi, 570; line, plane, and sphere, xi, 571—2; cylinders, cones,
ruled surfaces, xi, 572—3; transformation of coordinates, xi, 573—6; quadric surfaces (paraboloids,
ellipsoids, and hyperboloids), xi, 576—9; curves : tangent, osculating plane, curvature, xi, 579—80;
surfaces: tangent lines and plane, curvature, xi, 580—2; (see also Hypergeometry).
Geometry of Position : theorems in, i, 317—28, 356—61, 414—20, 550—6, 567, 588.
Gergonne, J. D.: caustics, n, 118, 339, 341, 368; polyzomal curves, vi, 520.
Geschlecht: (genus) of curve, after Riemann, v, 467, 517, 619.
Glaisher, J. W. L.: notation for elliptic functions, i, 548; definite integration, vm, 1; centro-surface of
ellipsoid, vm, 364; report on mathematical tables, ix, 461—99; development of an idea of Eisenstein,
x, 58—9; proof of Stirling’s theorem, x, 267—8; quadrilateral inscribable in circle, x, 578 ; log 2,
xi, 70; elliptic functions, xi, 73; least factors of numbers, xi, 430; modular function *<», xiii,
338—41; theta and omega functions, xiii, 558—9.
Glide : the term, i, 236.
Glover, J. W.: on theory of groups, xiii, 533.
Goniometry: Cotterill’s problem in, x, 295—7.
Gopel, A.: theory of numbers, iv, 41; theta functions, vm, xiii, x, 464, 499, xn, 363—4; double theta
functions and 16-nodal quartic surface, x, 157, 162, 172, 173, 175, 180—1; table of tetrads, 508,
549—51; double theta functions, xi, 454.
Gordan, P. : binary quintic and sextic, vi, 190; irreducible covariants of binary quantic, vn, 334, 341,
348—53; covariants of binary quantic, vm, 566; finiteness of concomitant systems, x, 286 ; derivatives,
x, 340, 377; Schwarzian derivative and polyhedral functions, xi, 149, 199; finite groups, xi, 237—41;
covariantive forms and tables, xi, 272; concomitants of ternary cubic, xi, 343; Abelian functions,
xn, 102, 109; icosahedral substitutions, xiii, 552.