Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Supplementary volume)

GEOMETRICAL—GORDAN. 
100 
geodesics on quadric surface, vm, 164—70; formulae for position of point, vm, 170—4; ellipsoid 
and skew hyperboloid, vm, 174—8, 188—99 ; tables, viii, 196—9. 
Geometrical Construction: in optics, x, 28; of heptagon, x, 609. 
Geometrical Representation; of elliptic functions, hi, 3; of imaginary variables, x, 316—23; of an 
equation between two variables, xn, 104. 
Geometry; of n dimensions, i, 55—62; reciprocity, I, 377—82; of quantics, ii, 222; of one and two 
dimensions defined, ii, 561—2; of one dimension, n, 563—9, 583—96; of two dimensions, n, 569—83, 
586—92; relations of, metrical and descriptive, n, 592; non-Euclidian and hyper-, n, 604—6, 
vm, xxxiii—v, 409—13, xn, 220—38; Lobatschewsky’s imaginary, v, 471; problem of permutation, 
v, 493—4; signification of elementary formula, v, 498—9; notion of absolute, v, 550; drawings in, 
vi, 9; constructive, vn, 26—30; transformation, vn, 121—2; Cayley and Klein on metrical, vm, 
xxxvi—vii; hyperbolic, elliptic and parabolic, vm, xxxvii; Cayley’s work in analytical, vm, xxxviii; 
formulae relating to right line, x, 287—9; considerations on solar eclipse, x, 310—5; interpretation 
of algebraic equations, x, 581; solid, xi, 224; Schubert’s numerative, xi, 281—93; Mill on, xi, 
432—4; Euclidian, xi, 434—7; Cartesian, xi, 437—9; abstract, xi, 441—2; origin, xi, 445—8; in 
Greece, xi, 446; evolution of descriptive, xi, 448—9 ; date of extensions in, xi, 449—51; plane and 
solid, xi, 450—1; function in, xi, 522—3; interpretation of elliptic function formulae, xn, 107; 
d’Alembert Carnot paradox, xn, 305—6; of the compass, xn, 314—7; algebra and logic, xn, 459; 
{see also Hypergeometry: for General Theory, see Quantics, sixth memoir). 
Geometry, Abstract, Memoir on: vi, 456—69, 596 ; introductory, vi, 456—7; space, vi, 456—7; general 
explanations, vi, 457—62, 596 ; omal relation, order, vi, 463; parametric relations, vi, 463—4; quantics, 
notations, etc., vi, 464—6; resultant, discriminant, vi, 466—7 ; consecutive points, tangent omals, 
vi, 467—9. 
Geometry, Analytical, in Ency. Brit.: xi, 546—82; introductory, xi, 546; Part I, pure analytical, 
xi, 546—67; is descriptive, xi, 552—6; metrical theory, xi, 556—7 ; equations of right line and 
circle—transformation of coordinates, xi, 558—61 ; the conics, xi, 561—4; tangent, normal, circle and 
radius of curvature, xi, 564—5 ; coordinates, xi, 566—7 ; Part II, solid analytical geometry, intro 
ductory, xi, 567—9; metrical theory, xi, 570; line, plane, and sphere, xi, 571—2; cylinders, cones, 
ruled surfaces, xi, 572—3; transformation of coordinates, xi, 573—6; quadric surfaces (paraboloids, 
ellipsoids, and hyperboloids), xi, 576—9; curves : tangent, osculating plane, curvature, xi, 579—80; 
surfaces: tangent lines and plane, curvature, xi, 580—2; (see also Hypergeometry). 
Geometry of Position : theorems in, i, 317—28, 356—61, 414—20, 550—6, 567, 588. 
Gergonne, J. D.: caustics, n, 118, 339, 341, 368; polyzomal curves, vi, 520. 
Geschlecht: (genus) of curve, after Riemann, v, 467, 517, 619. 
Glaisher, J. W. L.: notation for elliptic functions, i, 548; definite integration, vm, 1; centro-surface of 
ellipsoid, vm, 364; report on mathematical tables, ix, 461—99; development of an idea of Eisenstein, 
x, 58—9; proof of Stirling’s theorem, x, 267—8; quadrilateral inscribable in circle, x, 578 ; log 2, 
xi, 70; elliptic functions, xi, 73; least factors of numbers, xi, 430; modular function *<», xiii, 
338—41; theta and omega functions, xiii, 558—9. 
Glide : the term, i, 236. 
Glover, J. W.: on theory of groups, xiii, 533. 
Goniometry: Cotterill’s problem in, x, 295—7. 
Gopel, A.: theory of numbers, iv, 41; theta functions, vm, xiii, x, 464, 499, xn, 363—4; double theta 
functions and 16-nodal quartic surface, x, 157, 162, 172, 173, 175, 180—1; table of tetrads, 508, 
549—51; double theta functions, xi, 454. 
Gordan, P. : binary quintic and sextic, vi, 190; irreducible covariants of binary quantic, vn, 334, 341, 
348—53; covariants of binary quantic, vm, 566; finiteness of concomitant systems, x, 286 ; derivatives, 
x, 340, 377; Schwarzian derivative and polyhedral functions, xi, 149, 199; finite groups, xi, 237—41; 
covariantive forms and tables, xi, 272; concomitants of ternary cubic, xi, 343; Abelian functions, 
xn, 102, 109; icosahedral substitutions, xiii, 552.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.