Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Supplementary volume)

HYPERDETERMINANTS—INTEGRAL. 
104 
Hyperdeterminants: the term, i, 81, 95, 114, 585; note on, i, 352—5, 588; a system of certain formulae, 
i, 533; theory, i, 577—9; theory of permutants, ii, 19; theory of intermutants, n, 26; qualities, n, 
225; theory of seminvariants, xii, 344; Sylvester’s work in, xm, 46; an identity, xm, 210—11; (see 
also Covariants, Invariants). 
Hyper dimensional Space: quadrics in, ix, 79—83; {see also Hypergeometry, Hyperspace). 
Hyperelliptic Functions: trisection of, vi, 594; and theta functions, x, 162—5, 166—79, 184—214, 
551—5; and triple theta functions, x, 432—6; addition-theorem, x, 455—62; the term, xi, 533—4; 
and nodal quartics, xn, 196—208; {see also Theta-Functions). 
Hyperelliptic Integrals: of first order, xii, 98—9. 
Hypergeometric Series : summation of a certain factorial expression, in, 250—3; theorem, in, 268—9; 
differential equations, xi, 17—25; note on, xi, 125—7; and Schwarzian derivative, xi, 176—9. 
Hypergeometry: of n dimensions, i, 55—62 ; a branch of mathematics, vm, xxxiii—v; five-dimensional, 
ix, 79—83; and quadric surfaces, ix, 246—9; 21 coordinates of conic in space, xi, 82—3; Sylvester’s 
work in, xm, 46; {see also Hyperspace, Prepotentials). 
Hyperspace: and quantics, n, 222; and non-Euclidian geometry, n, 606; representation by means of, 
vi, 198; of four dimensions, special theorem, ix, 246—9; {see also Hypergeometry). 
Icosahedra: construction, iv, SI—2; axial systems, v, 531—9; Klein on rotations of, x, 153; as regular 
solids, x, 270—3; automorphic function, xi, 169, 179—83, 185, 212—6. 
Icosahedral Substitutions {see Substitutions). 
Ideal: the term, vi, 483. 
Ideal Numbers : xi, 456. 
Idem: defined, xii, 66. 
Idempotent: the term, xii, 61. 
Identities: cubic, v, 597; trigonometrical, vm, 525, xi, 38, xm, 538—40; elliptic transcendent, vm, 564; 
a transcendental, xi, 37; algebraic, xi, 63—4, 130—1, xm, 76—8; a hyperdeterminant, xiii, 210—11. 
Imaginarles: on an octuple system of, i, 301; eight-square, xi, 368—71, xii, 465; the term, xi, 439; 
theory of equations, xi, 502—6; and function, xi, 523; associative, xii, 61, 105—6 ; perpendicularity, 
xii, 466—72; roots of equation, xm, 36; Sylvester’s work at, xm, 46; quaternions, xm, 542. 
Imaginary Quantities: logarithms, vi, 14—8; geometrical construction relating to, xi, 258—60. 
Immit: defined, iv, 109. 
Improper : conditions for curves, vi, 193. 
Increment: the term, vi, 468. 
Indefinite: applied to integration, ix, 500—3; the term, xm, 290. 
Indeterminate Equations: problem in indeterminate analysis, hi, 205—7. 
Index: to philosophic memoirs, report on, v, 546—8, 620. 
Indicial Equation: of differential equation, xii, 398, 453. 
Indicial Function: of differential equation, xii, 398, 401. 
Inertia : axes and moments of, iv, 478—80, 559—66. 
Ineunt: defined, ii, 574, v, 521, vi, 469; non-Euclidian geometry, xm, 489. 
Infinitesimal Rotations: vi, 24—6. 
Infinity: in geometry, xi, 464. 
Inflexional Tangents: and geodesic lines, vm, 157; {see also Tangents). 
Inflexions: of cubical divergent parabolas, v, 284—8; of cubic curve, i, 584, in, 48; Hesse on, iv, 186, 
v, 493—4, xi, 473; of curves, xi, 471—3, 480. 
Integral Calculus: some formulae of, i, 309—16, 588; transformation, i, 383; Picard’s memoir on, xii, 
408—11. 
Integral Functions: Legendre’s coefficients, i, 375—6; the term, iv, 603—4, xi, 523; prepotential 
surface, ix, 321—30, 330—4, 352—9; potential solid, ix, 334—7; epispheric, ix, 410—17; reduction
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.