Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Supplementary volume)

ISOCHRONISM—JOHNSON. 
106 
Isochronism: of circular hodograph, in, 262—5. 
Isomers: Mathematical theory of, ix, 202—4. 
Isoparametric Lines: and planet’s orbit, vn, 467. 
Isoperimetrical Problem : vn, 263. 
Isothermals: of Meyer, xm, 175. 
Jacobi, K. G. J.: theory of algebraic curves, i, 53; determinants, i, 63, 64, 66; quaternions, i, 126, 
127, 586; inverse elliptic functions, i, 132, 136, 152, 156, 162, 180; rotation of solid body, i, 
238, iv, 575, 576—7, 579; involution, I, 259, 263; definite integral, I, 270—1 ; dynamical differential 
equations, I, 276—9; elliptic functions, i, 290—300, 507, 587, xi, 452; demonstration of theorem 
on focal lines, i, 362—3; differential equations of Abelian functions, i, 366—9; skew determinants, 
i, 411; simultaneous linear transformations, I, 428; transformation of integrals, I, 440, 442; attraction 
of ellipsoids, i, 511—8; solution of equation x m —1 = 0, i, 564; Lagrange’s theorem, n, 7; geo 
metrical representation of elliptic integral, II, 56; in-and-circumscribed polygon, n, 141; partition 
of numbers, n, 248; lunar theory, hi, 13; canonical formulae for disturbed motion, hi, 76—7; 
problem of three or more bodies, m, 102; transformation, hi, 129; finite differences, m, 132—5; 
complete integral of partial differential equation, hi, 166; planetary theory, nr, 173; calculus of 
variations and differential equations, in, 174—84, 200, 202; De Motu Puncti singularis, in, 182—3, 
202; problem of three bodies, hi, 519—21, iv, 541, 548—51, 589, v, 23, vi, 183; Theoria Novi 
Multiplicatoris, hi, 183—5; theory of ideal coordinates, hi, 185; Encke’s memoir über die sped eilen 
Störungen, m, 179—80; in-and-circumscribed triangle, ill, 236; disturbed elliptic motion, hi, 
270—1 ; canonical system of formulae, hi, 290; reversion of series, iv, 30—7; transformation of 
elliptic integrals, iv, 60, 64; double tangents, iv, 187; conics, iv, 207; PfafPs problem, iv, 359— 
63; central forces problem, iv, 520, 589; Nova Methodus, iv, 515, 521, 589; elliptic motion, iv, 
522, 589; problem of two centres, iv, 530, 532, 589; motion of a single particle, iv, 537—8, 
589; motion in resisting medium, iv, 541, 589; motion of a point, iv, 547, 589; elimination of 
nodes, iv, 551, 589; transformation of coordinates, iv, 554, 557, 589; Weierstrass’s function al (x), 
v, 34—5; transformation of elliptic functions, v, 472, ix, 103, 113—75, xn, 59, 505—34; Canon 
Arithmeticus, vi, 83—6, xi, 85, 86; the Jacobian relation, vi, 467; geodesic lines on ellipsoid, vn, 
493; transformation of double integral, ix, 250—2, 254; epispheric integrals, ix, 321, 410—17; 
mathematical tables, ix, 472—3, 484—5; series, x, 25—7; Poisson’s theorem, x, 108—9, 110—3; 
theta functions, x, 156, 473, 478, 490, 496—7, xi, 41—6, xm, 559; roots of unity, xi, 58—60; 
Schwarzian derivative and polyhedral functions, xi, 149; hypergeometric series, xi, 178; Landen’s 
theorem, xi, 339; Abelian functions, xi, 454; theory of numbers, xi, 602; theorem in simultaneous 
equations, xn, 39; fraction theorem, xn, 123—5; Weierstrassian and Jacobian elliptic functions, 
xii, 425—7; sextic equation, xi, 389—401, xn, 493—9; sums of two series, xm, 50; modular 
equations, xm, 64; characteristic n and curves in space, xm, 469; sextic resolvent equations, 
xm, 473—9. 
Jacobian: defined, n, 319, iv, 607; of two quantics, n, 517; theory of, and polyzomal curves, 
vi, 566—8; the extended notion, vn, 134; of surfaces, vii, 134—6; of two curves, ix, 21; of 
quadric surfaces, x, 568; of six points, x, 613; rational transformation, xm, 116; (see also Quantics). 
Jefferson, T.: founder of Virginian mathematical professorship, xm, 43. 
Jeffery, H. M. : on quartic curves, xi, 408. 
Jellett, J. H.: theorem of, on attractions, i, 388—91. 
Jenkins, M.: Arbogast’s method of derivations, iv, 609 ; problem in factorials, vn, 597. 
Jerrard, G. B. : quintics, iv, 391—4, v, 50—4, 77, 89; theory of equations, xi, 520. 
Joachimsthal, F.: theory of covariants, n, 177, 234; theorem of, n, 521, xn, 594—5, 601, 629; normals 
of a conic, iv, 74—7 ; attraction of terminated straight line, vn, 33. 
Johnson, W. W.: matrices, xi, 252.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.