Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Supplementary volume)

109 
LEVERRIER—LINK-WORK. 
Leverrier, U. J. J. : disturbing function in planetary theory, hi, 321, vu, 511—27; elliptic motion, in, 
361, 362, iv, 523, 590 ; position of orbit in planetary theory, vn, 545. 
Lévy, M. ; orthogonal surfaces, vni, 269, 569—70 ; Lupin’s theorem, ix, 85. 
Light, Polarized : MacCullagh’s theorem, iv, 12—20. 
Limaçon of Pascal : i, 480, xi, 477. 
Lindemann, F. ; non-Euclidian geometry, xm, 481. 
Linear ; and omal relations in abstract geometry, vi, 463. 
” Linear Differential Equations : invariants of, xn, 390—3 ; general theory, xn, 394—402, 444—52 ; 
decomposition, xn, 403—7. 
Linear Equations : and determinants, xi, 490 ; standard solutions of system of, xn, 19—21. 
Linear Function : the term, xi, 492. 
Linear Quantics (see Qualities). 
Linear Substitutions : note on a function in, x, 307—9. 
Linear Transformations: theory of, i, 80—94, 95—112, 117, 584, 585; Eisenstein’s and Hesse’s formulae, 
i, 113—6, 585; homogeneous functions of third order with three variables, I, 230—3; hyperdeterm 
inants, i, 352—5, 577—9, 588, 589 ; theory of permutations, i, 423—4 ; simultaneous, of two homo 
geneous functions of second order, i, 428—31 ; theory of permutants, n, 19—23 ; the term, iv, 594, 
605 ; of elliptic integrals, ix, 618—21 ; of theta functions, xn, 50—5 ; Sylvester’s work in, xm, 46 ; 
(see also Covariants, Invariants, Quantics). 
Line-geometry : and congruences, xm, 228—30 ; (see also Coordinates, Lines). 
Lineo-linear : the term, ii, 517, iv, 604, vi, 464. 
Lineo-linear Transformation : between planes, vii, 215—6, 236—8. 
Line-pairs: the term, vi, 206, 209, 210, 211 ; through three given points and touching given conic, 
VI, 201, 244, 594. 
Line-pair-point: the term, vi, 202, 210, 211, 269, 594—5. 
Lines: on cubic surfaces, i, 445—56, vm, 371—6; harmonic relation of two, n, 96—7; of cubic curve, 
ii, 382 ; satellite, n, 383, v, 359 ; formulae, n, 405—9 ; line, plane and point, defined, n, 561—2 ; 
contour and slope, iv, 108—11, 609; cubic centres and cones, iv, 173—8, 179—81; geometry of, 
iv, 446—55, 616—8 ; involution, iv, 582, v, 1—3 ; cubic centres of three lines and a line, v, 73—6 ; 
theorem of conic and triangle, v, 100—2; intersections of pencils of four and two, v, 484—6; 
formulae for intersections of line and conic, v, 500—4 ; circle and parabola, problem, v, 607 ; notation 
in Pascal’s theorem, vi, 116—23 ; facultative, vi, 365—6, 450 ; dot-notation for, and planes and cubic 
surfaces, vi, 365—6, 373—449; twenty-seven on cubic surface, vi, 371—87; attraction of terminated 
straight, vn, 31—3; five on cubic surface, vii, 177—8; homographie transformation, vii, 193—7; 
spherogram and isoparametric, vn, 467—8 ; iseccentric and <?-spherogram, vn, 468—70 ; isochronic 
and time spherogram, vn, 470—7 ; Cayley’s work on six coordinates of, vm, xxxv • potentials of, 
ix, 278—80 ; formulae relating to right, x, 287—9 ; and points, x, 570 ; and conics, x, 602 ; contact 
with a surface, xi, 281—93 ; Mill on, xi, 432—3 ; non-Euclidian geometry, xi, 437, xm, 480—504 ; 
evolution of theory of curves, xi, 450—1 ; singularities of curves, xi, 468 ; in Ency. Brit., xi, 
548, 571—2; equation of right, xi, 558—61; and surface, xi, 629; Mascheroni’s geometry of the 
compass, xn, 314—7 ; reciprocal, xm, 58—9, 481 ; identity relating to six coordinates of a line, xm, 
76—8 ; and notion of plane curve of given order, xm, 79—80 ; syzygetic relations, xm, 224—7 ; 
of striction, on skew surface, xm, 232—7 ; system of in a plane, and their orthotomic circle, xm, 
346—7 ; and point, distance, xm, 495—7 ; theory of two lines, xm, 497—504 ; (see also Coordinates, 
Curvature, Geodesic Lines). 
Line Systems: two-dimensional geometry, n, 569—83. 
Link : the term, v, 521, vn, 183, xm, 506. 
Linkage: the MacMahon, xm, 265, 292, 293, 298—301. 
Link-work: x, 407.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.