Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Supplementary volume)

PONCELET—POTENZKREIS. 
120 
ideal factor of branch or branches, vi, 481—5 ; the trizomal and tetrazomal, vi, 485; intersection 
of two v zomals having same zomal curve, vi, 486—7; theorem of decomposition of tetrazomal, 
vi, 487—9; application to trizomal, vi, 489—94; tetrazomal curve, vi, 494; variable zomal of 
trizomal curve, resumed, vi, 494—7; Part II, subsidiary investigations, vi, 497—515; preliminary 
remarks, vi, 497—8 ; circular points at infinity; rectangular and circular coordinates, vi, 498—9 ; 
antipoints; definition and fundamental properties, vi, 499—500; antipoints of circle, vi, 500; 
antipoints and pair of orthotomic circles, vi, 500; forms of equation of circle, vi, 501 ; system 
of 16 points, vi, 501—3; property in regard to four confocal conics, vi, 503—4; system of sixteen 
points, the axial case, vi, 504—5; involution of four circles, vi, 505—8; locus connected with 
foregoing, vi, 508—9; formulae of two sets each of four concyclic points, vi, 509—11; ditto 
further properties, vi, 512—5; Part III, theory of foci, vi, 515—34; the general theory, vi, 515—7; 
foci of conics, vi, 517—9; variable zomal applied to conic, vi, 519—21; foci of circular cubic 
and bicircular quartic, vi, 521—2; centre of circular cubic, and nodo-foci, etc., of bicircular quartic, 
vi, 522—3; circular cubic and bicircular quartic; symmetrical case, vi, 523; ditto, singular forms, 
vi, 523—6 ; analytical theory for circular cubic, vi, 526—8; ditto, for bicircular quartic, vi, 528—30; 
property that points of contact of tangents from pair of concyclic foci lie in a circle, vi, 530—34; 
Part IV, trizomal and tetrazomal curves where the zomals are circles, vi, 534—66; the trizomal 
curve-tangents at /, J, etc., vi, 534—7; foci of conic represented by equation in areal coordinates, 
vi, 537; theorem of variable zomal, vi, 539—41; relation between conic and circle, vi, 541—2; 
case of double contact, Casey’s equation in problem of tactions, vi, 543; intersections of conic 
and orthotomic circle on set of four concyclic foci, vi, 543—4; construction of symmetrical curve, 
vi, 544—6; focal formulae for general curve, vi, 547; circular cubic, vi, 548—9; focal formulae 
for symmetrical curve, vi, 549 ; symmetrical circular cubic, vi, 549—50; general ditto, vi, 550—3; 
transformation to new set of concyclic foci, vi, 553; tetrazomal curve, decomposable or indecomposable, 
vi, 553—4; cases of indecomposable, vi, 554—5; ditto, centres being in line, vi, 555—6; the 
decomposable curve, vi, 556—7 ; ditto, centres not in a line, vi, 557—61 ; ditto, centres in a line, 
vi, 561—5; ditto, transformation to a different set of concyclic foci, vi, 565—6; theory of Jacobian, 
vi, 566—8; Casey’s theorem for circle touching three given circles, vi, 568—73; a norm when 
the centres are in line, vi, 573—5; trizomal curves with cusp or two nodes, vi, 575—6. 
Poncelet, J. V.: harmonic relations, n, 96; porism of in-and-circumscribed triangle, hi, SO—5; 
rectangular hyperbola, in, 254; in-and-circumscribed polygon, v, 21—2; reciprocal polars, xi, 466. 
Pont6coulant, G. de: Systeme du Monde, in, 309—10; Lunar Theory, in, 521, vn, 357. 
Porism: homographic, defined, in, 74, 84; allographic defined, in, 75, 85; of polygon and correspondence, 
ix, 94. 
Porism of in-and-circumscribed Polygon: ii, 87—9, 91—2,97, 138—44, 145—9, iv, 292—308, vm, 
14—21, 212. 
Porism of in-and-circumscribed Triangle: n, 56, 87—90, 91, in, 67—75, 80—5, 229—41. v, 549—50, 
579, VIII, 212—57. 
Portraits of Cayley: frontispiece to vols. vi, vn, xi. 
Pos: the abbreviation in groups, xm, 119. 
Positive: the rule of signs, iv, 595—6, xi, 492. 
Postulandum of Curve: the term, i, 583, vn, 140, xu, 501; and capacity, xm, 115. 
Postulation: the term, i, 583, vn, 140, 225, vm, 394; of curve, xu, 501. 
Potential: and attractions, i, 195. 
Potentials: of polygons and polyhedra, ix, 266—80; of ellipse and circle, ix, 2S1—301 ; Smith’s Prize 
question on, xi, 261—4. 
Potential-solid : prepotential, ix, 346—7. 
Potential-surface : prepotential, ix, 343—6. 
Potenzkreis of Steiner: in, 113.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.