Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Supplementary volume)

SERRET—SIXTEEN. 
130 
Serret, P. : syzygetic relations, xm, 224. 
Servois, J. F. : multiple algebra, xn, 468. 
Sets : homology of, in, 35. 
Sextactic Points: and plane curves, v, 545, vi, 217; and reciprocants, v, 618. 
Sextactic Reciprocant : xm, 387. 
Sextic: binary, and quintics, vi, 190; unicursal, vi, 248; and cubic curves in pencil of six lines, vi, 
593—4 ; the anharmonic-ratio, vii, 314—5 ; bicursal, ix, 551, 581—6 ; tricircular, ix, 562—70 ; 
numerical generating function, x, 394—6. 
Sextic Cone: circumscribed to quartic surface, vii, 265; and nodes, table, vn, 291. 
Sextic Curves : foci of conics, vn, 1—4 ; rational transformation, vn, 236—8 ; and nodes, vn, 256—7 ; 
and quartic surfaces, vii, 267—71 ; mechanical description, vm, 138—44 ; with five double points, 
ix, 504—7. 
Sextic Developable: v, 279—83, 511—9, vi, 87—100. 
Sextic Function : and Abelian functions, xi, 483. 
Sextic Resolvent : Jacobian, iv, 310, xi, 389—401, xii, 493—9. 
Sextic Resolvent Equations : of Jacobi and Kronecker, xm, 473—9. 
Sextic Seminvariants : and perpétuants, xm, 317. 
Sextic, Spherical: and oval, v, 469. 
Sextic Syzygies: xn, 257—62, 273. 
Sextic Torse (see Torse, on a certain Sextic, also Torses). 
Shanks, W. : log 2, xi, 70. 
Sharp: the term, vm, 406—8, xm, 265, 291, 304—6, 362. 
Sharp-cone : the term, vm, 102. 
Sheets: roots in algebraic equations, iv, 116—9; cubic curves, iv, 120—2. 
Shell: formulae for potential of, ix, 266—7; attraction of ellipsoidal, on exterior point, ix, 302—11. 
Sibi-reciprocal Surfaces : vi, 21, x, 252—5. 
Siebeck, F. H. : binodal quartic and graphical representation of the elliptic functions, xm, 10. 
Signs : rule of, iv, 595—6, xi, 492. 
Sign Symbols: theorems, vm, 535—7. 
Simple Cone : defined, v, 402, 404, 551. 
Simple Groups: xm, 533. 
Simultaneous Equations : Jacobi’s theorem in, xn, 39. 
Simultaneous Roots of Two Equations: Jacobi’s theorem in, xii, 123—5. 
Sines, Multiple : x, l—2. 
Single Theta Functions: memoir, x, 473, 476—97; and double theta functions, x, 155—6, 186—9; 
and elliptic functions, xi, 250—1 ; linear transformation, xii, 50—5. 
Singular Curve : on surface, vn, 244. 
Singularities : of curves and developables, I, 208 ; of tortuous curves, I, 500 ; of surfaces, ii, 2»—32, 
IV, 21—7, VI, 123—8, 334—41, 354, 582—5, VIII, 394—8, XI, 225—6, 630—1 ; of plane curves, 
v, 424—6, 476—7, 520—8, 619, vi, 3, xi, 30—6; of curves and torses, v, 516; compound, v, 525; 
of curves in space, v, 613 ; of cubic surfaces, vi, 363 ; reciprocal surfaces, vi, 596—601 ; of curves, 
xi, 486—70. 
Singular Point : for differential equations, xii, 395 ; integrals in domain of, xii, 395—402. 
Singular Solutions of Differential Equations: iv, 426—7; of first order, vm, 529—34 x, 19—24. 
Six Coordinates of a Line (see Coordinates, Six of a Line). 
Six Lines: Sylvester’s involution of, vn, 66. 
Six-pointic Contact : on cubic, iv, 207. 
Sixteen-nodal Quartic Surfaces: i, 587, v, 431—7, vi, 126—7, 281—4, x, 157—65, iso—3, 437—40, 
464, 548—51, 604, xii, .95—7.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.