Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Supplementary volume)

131 
SKEW-SPHERICAL. 
Skew: the word, i, 332. 
Skew Antipoint: the term, ix, 65—6. 
Skew Convertible Matrices: n, 489. 
Skew Covariants: n, 233. 
Skew Cubics: demonstration of Chasles’ theorem, i, 212. 
Skew Curvature: the term, i, 234. 
Skew Determinants: the term, and some properties of, i, 332—6, 410; on, i, 410—3, 589; researches, 
ii, 202—15, iv, 72—3; and transformation, n, 497; a theorem, iv, 72—3. 
Skew Hyperboloids: geodesic lines, vm, 174—8, 188—99; of revolution, projection of, ix, 237—40. 
Skew Matrix: iv, 602. 
Skew Polars: i, 378. 
Skew Reciprocals: the term, i, 415. 
Skew Surfaces (see Scrolls). 
Slope Lines: iv, 108—11, 609. 
Smith, H. J. S.: higher singularities of plane curves, v, 619; transformation of elliptic functions, 
ix, 174—5; report on mathematical tables, ix, 461—99; death of, xi, 429; theory of numbers, 
xi, 612; theta and omega functions, xn, 50; theta functions, xn, 337; transformation, xm, 38; 
predecessor of Sylvester in Oxford chair, xm, 44; on a memoir by, xm, 558—9. 
Smith, P.: on Lagrange’s solution of caustic, n, 353. 
Smith’s Prize Papers: vm, 414—35, 436—8, 439—57, 474—90, 496—516, 538—9, 551—5, 558—63; 
infinitesimal rotation, vi, 24—6; general equation for virtual velocities, ix, 205—8; solutions and 
remarks, ix, 218—36; Bernoulli’s numbers in analysis, ix, 259—62; problems and solutions 1877, 
x, 39—46; question on theory of equations, xi, 115; on potentials, xi, 261—4. 
Sohnke, L. A.: motion in resisting medium, iv, 541; transformation of elliptic functions, ix, 113, 
114; ditto table, ix, 128—35; modular equations, ix, 543. 
Solar Eclipse, Graphical Construction: vn, 390—1, 479—92; geometrical theory, vn, 392—6, x, 
310—5; general explanation, vn, 479—82; modification for single blank projection, vn, 482—4; 
construction of relative orbits, vn, 484—7; geometrical theory of projection of penumbral curve, 
vn, 488—9; details and application to eclipse 21—22/12/70, vil, 489—92. 
Solid Body: motion of, I, 28—35, 583; geometrical representation of motion, i, 234—6; rotation 
round fixed point, I, 237—52, 336; rotation of, I, 462—4, III, 475—504, iv, 577, 592 ; four forces 
acting on, ix, 201. 
Solid Integral Prepotential: ix, 334—7. 
Solid of Revolution: attraction of, i, 508. 
Solids: Poinsot’s four new regular, iv, 81—5, 86—7; plane representation of, vn, 26—30. 
Soluble Quintics: iv, 484, v, 55—61, xi, 402—4. 
Solutions (see Problems, Problems and Solutions, Smith’s Prize Papers). 
Somoff, J.: rotation of solid body, iv, 577, 592. 
Space: of any number of dimensions, and quantics, n, 222 ; facultative and non-facultative, vi, 156; 
dimensions and abstract geometry, vi, 456—7; rational transformation, vn, 189—240; multiple, 
vm, xxxiii—v; points and lines, correspondence in, vm, 566; flexure, x, 331—2; the term in 
five-dimensional geometry, ix, 79; theories of, xi, 434—7; curves in, xi, 489; elliptic, and non- 
Euclidian geometry, xm, 481 ; (see also Hyperspace). 
Special Conditions for Curves: vi, 193. 
Species: of Quartic Scrolls, v, 201, vi, 328; twenty-three, of cubic surfaces, vi, 359—60. 
Specific: the term, xm, 290. 
Sphere: powers of, i, 581 ; and polyhedron, v, 531 ; problem and solution, vn, 563; prepotentials, 
ix, 351—2, 359—79 ; in Ency. Brit,., xi, 571—2. 
Spherical Conics: theorem, iv, 428; stereographic projection, v, 106—9; (see also Polyzomal Curves). 
17—2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.