131
SKEW-SPHERICAL.
Skew: the word, i, 332.
Skew Antipoint: the term, ix, 65—6.
Skew Convertible Matrices: n, 489.
Skew Covariants: n, 233.
Skew Cubics: demonstration of Chasles’ theorem, i, 212.
Skew Curvature: the term, i, 234.
Skew Determinants: the term, and some properties of, i, 332—6, 410; on, i, 410—3, 589; researches,
ii, 202—15, iv, 72—3; and transformation, n, 497; a theorem, iv, 72—3.
Skew Hyperboloids: geodesic lines, vm, 174—8, 188—99; of revolution, projection of, ix, 237—40.
Skew Matrix: iv, 602.
Skew Polars: i, 378.
Skew Reciprocals: the term, i, 415.
Skew Surfaces (see Scrolls).
Slope Lines: iv, 108—11, 609.
Smith, H. J. S.: higher singularities of plane curves, v, 619; transformation of elliptic functions,
ix, 174—5; report on mathematical tables, ix, 461—99; death of, xi, 429; theory of numbers,
xi, 612; theta and omega functions, xn, 50; theta functions, xn, 337; transformation, xm, 38;
predecessor of Sylvester in Oxford chair, xm, 44; on a memoir by, xm, 558—9.
Smith, P.: on Lagrange’s solution of caustic, n, 353.
Smith’s Prize Papers: vm, 414—35, 436—8, 439—57, 474—90, 496—516, 538—9, 551—5, 558—63;
infinitesimal rotation, vi, 24—6; general equation for virtual velocities, ix, 205—8; solutions and
remarks, ix, 218—36; Bernoulli’s numbers in analysis, ix, 259—62; problems and solutions 1877,
x, 39—46; question on theory of equations, xi, 115; on potentials, xi, 261—4.
Sohnke, L. A.: motion in resisting medium, iv, 541; transformation of elliptic functions, ix, 113,
114; ditto table, ix, 128—35; modular equations, ix, 543.
Solar Eclipse, Graphical Construction: vn, 390—1, 479—92; geometrical theory, vn, 392—6, x,
310—5; general explanation, vn, 479—82; modification for single blank projection, vn, 482—4;
construction of relative orbits, vn, 484—7; geometrical theory of projection of penumbral curve,
vn, 488—9; details and application to eclipse 21—22/12/70, vil, 489—92.
Solid Body: motion of, I, 28—35, 583; geometrical representation of motion, i, 234—6; rotation
round fixed point, I, 237—52, 336; rotation of, I, 462—4, III, 475—504, iv, 577, 592 ; four forces
acting on, ix, 201.
Solid Integral Prepotential: ix, 334—7.
Solid of Revolution: attraction of, i, 508.
Solids: Poinsot’s four new regular, iv, 81—5, 86—7; plane representation of, vn, 26—30.
Soluble Quintics: iv, 484, v, 55—61, xi, 402—4.
Solutions (see Problems, Problems and Solutions, Smith’s Prize Papers).
Somoff, J.: rotation of solid body, iv, 577, 592.
Space: of any number of dimensions, and quantics, n, 222 ; facultative and non-facultative, vi, 156;
dimensions and abstract geometry, vi, 456—7; rational transformation, vn, 189—240; multiple,
vm, xxxiii—v; points and lines, correspondence in, vm, 566; flexure, x, 331—2; the term in
five-dimensional geometry, ix, 79; theories of, xi, 434—7; curves in, xi, 489; elliptic, and non-
Euclidian geometry, xm, 481 ; (see also Hyperspace).
Special Conditions for Curves: vi, 193.
Species: of Quartic Scrolls, v, 201, vi, 328; twenty-three, of cubic surfaces, vi, 359—60.
Specific: the term, xm, 290.
Sphere: powers of, i, 581 ; and polyhedron, v, 531 ; problem and solution, vn, 563; prepotentials,
ix, 351—2, 359—79 ; in Ency. Brit,., xi, 571—2.
Spherical Conics: theorem, iv, 428; stereographic projection, v, 106—9; (see also Polyzomal Curves).
17—2