135
SYMMETROID—TABLES.
Symmetroid : the term, vil, 134, 280 ; lineo-linear correspondence of quartic surfaces, vix, 157—9 ;
and Jacobian, vu, 160—3, 175; with given nodes, vu, 163—6; and decadianome, vu, 256, 259;
and circumscribed cone, vu, 258—9 ; theory, vu, 264.
Symmetry : Sylvester on, xiii, 45.
Symptose : the term, I, 523, 529, 557—8.
Syntypic : the term, vu, 123.
Système Linéaire ; of Laguerre is a matrix, n, 604.
System of Equations ; order of, i, 457—61, 589 ; connected with Malfatti’s problem, i, 465—70 ;
note, i, 532—3, 589 ; algebraical, xi, 39—40.
Syzygant : the term, xn, 251 ; and seminvariants, xn, 257—62.
Syzygies : of degree six, vi, 148—53; of binary quintic connected, vu, 334; for binary cubic, ix, 55;
of quintic, x, 346—55 ; of sextic, xn, 257—62 ; of binary quartic, and elliptic integrals, xiii, 32 ;
Sylvester’s work in, xiii, 46 ; syzygetic relations among powers of linear qualities, xiii, 224—7 ;
and seminvariants, xiii, 310.
Tables, Brit. Assoc. Report on Mathematical: ix, 461—99; introductory, ix, 461—2; of divisors and
prime numbers, ix, 462—70; prime roots, ix, 471—7; Pellian equation, ix, 477—80; partitions,
ix, 480—3 ; quadratic forms, ix, 484—6 ; binary, ternary, quadratic, and higher forms, ix, 486—93 ;
complex theories, ix, 493—9.
Tables: linear transformations, i, 108; of covariants for quadratic, cubic, quartic, quintic, n, 276—81,
ii, 310—35 ; of covariants M to W of binary quintic, n, 282—309 ; covariants for sextic, n,
314—5; for septimic, n, 315—6; for octavic, n, 316—8; for nonic, n, 318—9; of concomitants
of ternary quadric, II, 322—3; of ternary cubic, n, 323—9, 331—5; of symmetric functions of
roots of equation, II, 423—39 ; of resultants of two equations, n, 449—53 ; Sturmian functions for
equations from second to fifth degrees, ir, 471—4; disturbing function in lunar theory, hi, 299—308,
311—8, vu, 516, 519—24, 525—7; of functions in theory of elliptic motion, in, 360—474;
Degen’s, for Pellian equation, iv, 40 ; equation of differences, iv, 246—56, 280—91 ; Arbogast’s
method of derivations, iv, 274—5 ; concomitants of ternary cubics, iv, 333—41 ; Tschirnhausen’s
transformation for quartics, iv, 373—4, 379—SO; and for quintics, iv, 387—90; numerical expansions,
iv, 470; polyacra, v, 44; binary quadratic forms, v, 141—56, 618; properties of scrolls, v, 171—2;
axial systems of polyhedra, v, 532—9; curves in space, v, 616; for prime or composite modulus,
vi, 83—6; asyzygetic covariants, vi, 149—152; qualities, vi, 167—8; resultant of a system of two
equations, vi, 292—9 ; conditions for existence of systems of equal roots of quartic or quintic,
vi, 300—12 ; singularities of cubic surfaces, vi, 363 ; also lines and planes, vi, 373 ; Legendre’s elliptic
functions, vu, 20 ; geodesic lines on oblate spheroid, vu, 23 ; rational transformation between two
spaces, vu, 210—3, 224; nodal quartic surfaces, vu, 283, 287, 291, 296; quartic surfaces, vil, 310,
609—10; irreducible covariants of binary quintic, vil, 341—6; planogram No. 1, vu, 439—40; ditto
No. 2, vu, 450—1 ; geodesic lines on ellipsoid, vu, 504—6 ; binary cubic forms, vm, 51—64 ; theory
of curve and torse, vm, 81—4 ; Pineto’s of logarithms (review), vm, 95—6 ; cones satisfying six
conditions, vm, 100; geodesic lines, particularly on quadric surface, vm, 196—9; in-and-circum-
scribed triangle, vm, 214—21; centro-surface of ellipsoid, vm, 365; Steiner’s surface, ix, 7;
transformation of elliptic functions, ix, 128—35, 163; Newcomb’s planetary, ix, 181—4; projection
of skew hyperboloid of revolution, ix, 240 ; classification for mathematical, ix, 424—5 ; report on
mathematical, ix, 424—5 ; chemical trees, ix, 436—43, 446—8, 450—60, 544—5 ; double theta
functions, x, 168—9, 171, 172—3; regular solids, x, 270—3; concomitants of quintic, x, 349—55,
362—9, 370—6, 377—94, 397—400; transvectants for quintic, x, 378—394; Kummer hexads, x,
506 ; theta functions, x, 507—10, 513—28, 530—6, 540—2, 544—6 ; theory of numbers, trisection,
xi, 89 ; ditto quartisection, xi, 94 ; Reuschle’s, of prime roots, xi, 95—6 ; of finite differences, xi,
144—7; connected with polyhedral function, xi, 158—9, 192; covariantive, xi, 272—80; Schubert’s