Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Supplementary volume)

TORSION—TRANSFORMATION. 
138 
and certain octic surfaces, x, 79—92; kinds of, xi, 227; in Ency. Brit., xi, 628, 629—32; and 
surfaces, xi, 632; and non-Euclidian plane geometry, xn, 222 ; (see also Developables). 
Torsion: the term, I, 234, xm, 232, 234. 
Tortolini, B.: envelopes, parallel curves and surfaces, iv, 123—33; parallel surfaces of ellipsoid, iv, 133. 
Tortuous Curves (see Curves). 
Torus: the term, vii, 246, vm, 25; paper by Darboux, vn, 247; the conic-, ix, 519—21. 
Townsend, R.: inertia, iv, 566, 593; confocal quadrics, vm, 520. 
Tractor: the term, vn, 73—5, x, 269; six coordinates of a line, vn, 85—6, 93—5. 
Trajectories: root-limitation, ix, 22—7; and orthomorphosis, xm, 170. 
Transcendental Analysis (see Function). 
Transcendental Function: the term, xi, 524. 
Transcendental Integrals (see Abelian Integrals). 
Transcendent, Gudermannian: v, 86—8, 617. 
Transformation: of quadratic forms, n, 145—9, 192—201, 215; of two quadric functions, in, 129—31; 
the term modulus of, iv, 605 ; plane curves, vi, 1—8, 593, vm, 387 ; Cremona’s, vi, 22—3; polyzomal 
curves, vi, 553, 565—6; two quantics into each other, vm, 385—7; unicursal surfaces, vm, 388—93; 
binary quadratic form, vm, 398—400; doubly infinite products, x, 494—7 ; theories, xi, 482; Landeu’s, 
xi, 584; double theta functions, xn, 358—89; of order 11, and modular equation, xm, 38—40; 
modular equation for cubic, xm, 64—5; (see also Special Headings below). 
Transformation, Automorphic: iv, 416, v, 439; of binary cubic function, xi, 411—6. 
Transformation, Cubic: in elliptic functions, ix, 522—6. 
Transformation, Geometric: vn, 121—2. 
Transformation, Homographic: xi, 189—90, 196—208. 
Transformation, Linear: n, 225, xi, 237—41; imaginary linear, vi, 183—6; lineo-linear, vn, 215—6, 
236—8 ; of theta functions, xn, 337—43. 
Transformation of Coordinates: i, 123—6, 586, iv, 552—9, vii, 95, 415—7, xi, 136—42, 558—61; 
formulae, vii, 97—8. 
Transformation of Elliptic Functions: i, 120—2, 585, v, 472, ix, 103—6, 244—5, x, 333—8, 611, xi, 
26, xil, 416—7, 535—54, XIII, 29—32, 490—2, 505—34, 535—55, 556—7. 
Transformation of Elliptic Integrals: i, 508—10, iv, 60—9, 609. 
Transformation of Equations: ix, 42, 48—51; of differential, v, 78—9. 
Transformation of Integrals: i, 383, hi, 1—4, 438—44, ix, 250—2. 
Transformation of Tschirnhausen: vi, 165—9, xi, 396; for cubics, iv, 364—7, xm, 421; quartics, iv, 
368—74; quartics and quintics, iv, 375—94, v, 449—53; theory of equations, xi, 509. 
Transformation, Orthomorphic: of a circle into itself, xm, 20. 
Transformation, Quadric: of elliptic functions, xn, 58; between two planes, xn, 100—1. 
Transformation, Rational, between Two Spaces, Memoir: vii, 189—240; introductory, vii, 189—90; 
general principle, vii, 190—3; homographic transformation between two lines, vii, 193—7; rational 
ditto between two planes, vii, 197—213, 216—21 ; tables, vii, 210—3; quadric transformation 
between two planes, vii, 213—6; quadric transformation any number of times repeated, vii, 219—21 ; 
reduction of general rational transformation to a series of quadric transformations, vii, 222—4; 
rational transformation between two spaces, vn, 224—9, 238—40 ; ditto quadri-quadric, VII, 229—30 ; 
ditto quadri-cubic, vn, 230—3; ditto cubo-cubic, vn, 233—8; this principal system consists of 
six lines, vn, 234—6; principal system of a proper sextic curve—the lineo-linear transformation 
between two spaces, vn, 236—8. 
Transformation, Rational: of plane curves, vi, 1—8; does not alter deficiency, vi, 3; between two 
planes and special systems of points, vn, 253—5; note on a theory of, xm, 115—6. 
Transformation, Rectangular : xi, 421—8. 
Transformation, Scalene: of plane curve, ix, 527—34.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.