Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 11)

[731 
732] 
97 
97 
67 
! 51 
88 
52 
7 
53 
70 
54 
21 
55 
16 
56 
63 
57 
48 
58 
92 
59 
47 
60 
82 
61 
44 
62 
52 
63 
35 
64 
59 
65 
8 
66 
80 
67 
24 
68 
46 
69 
72 
70 
41 
71 
22 
72 
26 
73 
66 
74 
78 
75 
4 
76 
40 
77 
12 
78 
23 
79 
36 
80 
69 
81 
11 
82 
13 
83 
33 
84 
39 
85 
2 
86 
20 
87 
6 
88 
60 
89 
18 
90 
83 
91 
54 
92 
55 
93 
65 
94 
68 
95 
732. 
A THEOREM IN SPHERICAL TRIGONOMETRY. 
[From the Proceedings of the London Mathematical Society, vol. XL (1880), pp. 48—50. 
Read January 8, 1880.] 
In a spherical triangle, where a, b, c are the sides, and A, B, G the opposite 
angles, we have 
— tan \c tan | a tan \b sin (A — B) = tan ^b sin A — tan £a sin B, 
tan \c {1 — tantan §b cos (A — B)} = tan cos A + tan \a cos B; 
which are both included in the form 
, . . tan-^c — tan hb (cos A +i sin^l) 
tan la (cosB — %smB) = x + tan iHeoiA +isin A) ■ 
For the first of the two identities: from 
cos A + cos B cos G 
COS CL — • T) • j 
sm B sm (J 
7 cos B + cos A cos G 
cos b = ;— , 
sm A sm G 
we deduce 
1 /cos A cos B\ cos G /cos B cos^l\ 
cos a - cos i = gp 
1 \ (sin 2 A - sin 2B) cos G sin (A. — B) 
- sirTO sin A sin B sin G sin A sin B 
sin (A - B) 
sin G sin A sin B 
(cos (A + B) + cos G] 
sin (J. — B) 
sin G 
(cos c — 1); 
C. XI. 
13
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.