[731
732]
97
97
67
! 51
88
52
7
53
70
54
21
55
16
56
63
57
48
58
92
59
47
60
82
61
44
62
52
63
35
64
59
65
8
66
80
67
24
68
46
69
72
70
41
71
22
72
26
73
66
74
78
75
4
76
40
77
12
78
23
79
36
80
69
81
11
82
13
83
33
84
39
85
2
86
20
87
6
88
60
89
18
90
83
91
54
92
55
93
65
94
68
95
732.
A THEOREM IN SPHERICAL TRIGONOMETRY.
[From the Proceedings of the London Mathematical Society, vol. XL (1880), pp. 48—50.
Read January 8, 1880.]
In a spherical triangle, where a, b, c are the sides, and A, B, G the opposite
angles, we have
— tan \c tan | a tan \b sin (A — B) = tan ^b sin A — tan £a sin B,
tan \c {1 — tantan §b cos (A — B)} = tan cos A + tan \a cos B;
which are both included in the form
, . . tan-^c — tan hb (cos A +i sin^l)
tan la (cosB — %smB) = x + tan iHeoiA +isin A) ■
For the first of the two identities: from
cos A + cos B cos G
COS CL — • T) • j
sm B sm (J
7 cos B + cos A cos G
cos b = ;— ,
sm A sm G
we deduce
1 /cos A cos B\ cos G /cos B cos^l\
cos a - cos i = gp
1 \ (sin 2 A - sin 2B) cos G sin (A. — B)
- sirTO sin A sin B sin G sin A sin B
sin (A - B)
sin G sin A sin B
(cos (A + B) + cos G]
sin (J. — B)
sin G
(cos c — 1);
C. XI.
13