C. XI.
17
[739
739] NOTE ON THE OCTAHEDRON FUNCTION,
and, substituting these in the remaining equations, they become
129
9),
hedron
jontain
.lations
^ (- 9ce + 8d~) = 0, - 9ce + 8d? = 0, ~ (- 9ce + 8d a ) = 0,
all satisfied if only — 9ce 4- 8d? = 0. Assuming b = f= 2, the values are
b, c, d, e, f= 2, 2 V(2), 3, 2 V(2), 2,
and the form is
Xy (f + V(2) Xhj + 5w ' y ~ + V(2) XyZ + yi ) ’
= xy I X
2 + V(2) xy + yZ ) ^ xy +
= x y{ x+ m y ) (* ■ + 7m y ) [x+:y V(2)1 (* + M •
This is, in fact, a linear transformation of the foregoing form XY(X 4 — F 4 ); for
writing
we have
and therefore
F ^ + V(2 ) y J’
X 2 = x- + (1 + i) V(2) xy + iy 2 ,
F 2 = a; 2 + (1 - i) \/(2) xy - iy 2 ;
X 2 + F 2 = 2;r{tf + V(2)2/},
i*-r>-s.y<2)y(.+JL),
or finally
X F (X* - F*) = 4*7(2) xy (x + y) (<r + ^ y) (« + y V(2)} (x + JL.);
and the two forms are thus identical.
= 0,
id last