290
ON SCHUBERTS METHOD FOR THE
[702
We have
g 4 = 2G, Pig 3 =Pigs = Pig e + G, = G.
Next for the terms in g 2 , from ppg =p} 2 +g e we have
p?g = Pige,
PiP*g =Pi 3 p2 +Pig e ,
and thence
Pig 3 = Pig,)
PiP*g*=PiP2g+Pigs,
or, since pig s — G as before, the whole term is = 18p 2 p- 2 g + 246?. The terms in g thus
become = g (6p*pa — 16pip*pa), and from the same equation Pig = Pi+g e we find
PiPSg =Pip 3 and p^hPsg =Pi ptP?,+Pi pi >
The value is thus finally found to be
= - lOprpo 2 - 10pfpaPa + ^piPipiPi + 10G.
The whole series of like results is
PiPi Pi%Ps PiPzPsPi G
1.
€o
9s
+
1
2.
+
1
-
1
3.
«3
ffe
3
-
3
4.
5 J
9p
+
1
5.
5?
h 2
u s
-
2
+
1
+
1
6.
2%
9e
+
4
-
3
7.
2
5?
9p
-1-
1
8.
JJ
V
-
3
2
+
1
9.
€ 2
¿2*^2
-
2
+
1
+
1
10.
«4
-
2
+
4
-
2
11.
Ö4
-
6
+
1
+
4
12.
«32
y
-
3
+
6
-
2
13.
5?
&3
-
7
-
1
+
2
+
4
14.
&2
-
6
-
3
+
3
+
4
15.
6e.,, 2
9-
—
4
+
8
-
2
16.
2„
62
—
7
-
4
+
4
+
4
17.
«5
—
10
-
10
+
5
+
10
18.
€ 42
—
10
-
16
+
8
+
10
19.
2 «33
—
9
-
18
+
9
+
10
20.
2 «322
—
9
-
24
+
12
+
10
21.
2 4 «2222
—
8
-
32
4"
16
+
10
22.
6^222
bi
-
6
-
12
+
8
+
4
23.
w« 3
b 2
-
3
+
3
+
1
24.
«2
—
1
-
1
+
2