769] ON A FORMULA RELATING TO ELLIPTIC INTEGRALS OF THE THIRD KIND. 341
and thence
that is,
Also
and hence
dy
du
dx
Vch = 2 ' J ’
y ^ = 2® [1 — (1 + k 2 ) x + k-x-].
cn 2 u dn 2 u — sn 2 u dn 2 u — k 2 sn 2 u cn 2 u
= 1 — 2 (1 + k 2 ) x + dk 2 x 2 ,
- y - 1
rJ/ii m rt (n n\2 ] ' ' rl'i/ U rJ')!
du x — a (a — xf ( du J du)
= -——- {- x — a + 2 (1 + k 2 ) ax + k 2 x z — 3k 2 ax 2 ).
(a—xf 1
Interchanging the letters, we have
A —A- — 7 —{— x — a + 2 (1 + k 2 ) ax + k 2 a 3 — 3k 2 a 2 x),
dd ci —x (a — x) 2
and hence, subtracting,
A _A A V— = 7 1 — \k 2 a? - 3k 2 a 2 x + 3k 2 ax 2 - k 2 x 3 }
eld a- x dux- a (a-x) 2
(a — x)‘
— k 2 (a — x),
k 2 (a — x) 3
which is the required result.