376
TABLES FOR THE BINARY SEXTIC.
[774
Remaining Coefficients of C, E, G.
C
x 3 y
«/+ 2
be — 6
cd -f- 4
xY
ag+ 1
ce - 9
d 2 + 8
xy s
bg+2
c/ - 6
de + 4
y 4
eg + 1
cZ/-4
e 2 + 3
xy
adg +
1
aef -
1
beg -
1
bdf-
8
be- +
9
ef +
9
ede -
17
d 3 +
8
r
aeg +
1
a/ 2 -
1
bdg -
3
bef +
3
e 2 g +
2
cdf -
1
ce} —
3
d 2 e +
2
Note.—In the tables on this page, a
has been treated like the other letters ;
on the preceding pages, the powers
of a have been suppressed except in
the first of every series of terms con
taining a common power of a.
G
x 7 y
a}g
+
1
abf
+
2
ace
-
19
ad 2
-L.
8
Ire
-
6
bed
+
44
c 3
-
30
x e y
2
abg
4-
7
acf
-
14
ade
—
14
bf
0
bee
-
21
Id 2
+
112
c 2 d
-
70
x r, y
aeg
+
7
adf
-
28
ae 2
-
14
b 2 g
H*
14
bef
-
42
bde
+
168
c}e
-
105
c 4 y
4
adg
0
aef
-
35
beg
+
35
bdf
0
be 2
+
105
ef
—
105
G
Py
5
aeg
7
of 2
-
14
bdg
+
28
bef
+
42
e 2 g
“f"
14
cdf
-
168
ce 2
+
105
x 2 y
a fg
—
7
beg
+
14
¥ 2
0
edg
+
14
cef
21
df
-
112
de-
+
70
xy 7
ag 2
—
1
bfg
-
2
ceg
+
19
ef 2
+
6
d-g
-
8
def
-
44
e s
+
30
y 8
bg 2
—
1
efg
+
5
deg
-
2
df 2
-
8
ef
4*
6
The final result is that we have the values of the invariants B, I, P, W, Z
and the leading coefficients of the covariants A, C, D, E, F, G, H, J, K, L, M,
N0, Q, R: also the means of calculating the leading coefficients of the remaining
covariants S, T, U, V, X, Y.