Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 11)

376 
TABLES FOR THE BINARY SEXTIC. 
[774 
Remaining Coefficients of C, E, G. 
C 
x 3 y 
«/+ 2 
be — 6 
cd -f- 4 
xY 
ag+ 1 
ce - 9 
d 2 + 8 
xy s 
bg+2 
c/ - 6 
de + 4 
y 4 
eg + 1 
cZ/-4 
e 2 + 3 
xy 
adg + 
1 
aef - 
1 
beg - 
1 
bdf- 
8 
be- + 
9 
ef + 
9 
ede - 
17 
d 3 + 
8 
r 
aeg + 
1 
a/ 2 - 
1 
bdg - 
3 
bef + 
3 
e 2 g + 
2 
cdf - 
1 
ce} — 
3 
d 2 e + 
2 
Note.—In the tables on this page, a 
has been treated like the other letters ; 
on the preceding pages, the powers 
of a have been suppressed except in 
the first of every series of terms con 
taining a common power of a. 
G 
x 7 y 
a}g 
+ 
1 
abf 
+ 
2 
ace 
- 
19 
ad 2 
-L. 
8 
Ire 
- 
6 
bed 
+ 
44 
c 3 
- 
30 
x e y 
2 
abg 
4- 
7 
acf 
- 
14 
ade 
— 
14 
bf 
0 
bee 
- 
21 
Id 2 
+ 
112 
c 2 d 
- 
70 
x r, y 
aeg 
+ 
7 
adf 
- 
28 
ae 2 
- 
14 
b 2 g 
H* 
14 
bef 
- 
42 
bde 
+ 
168 
c}e 
- 
105 
c 4 y 
4 
adg 
0 
aef 
- 
35 
beg 
+ 
35 
bdf 
0 
be 2 
+ 
105 
ef 
— 
105 
G 
Py 
5 
aeg 
7 
of 2 
- 
14 
bdg 
+ 
28 
bef 
+ 
42 
e 2 g 
“f" 
14 
cdf 
- 
168 
ce 2 
+ 
105 
x 2 y 
a fg 
— 
7 
beg 
+ 
14 
¥ 2 
0 
edg 
+ 
14 
cef 
21 
df 
- 
112 
de- 
+ 
70 
xy 7 
ag 2 
— 
1 
bfg 
- 
2 
ceg 
+ 
19 
ef 2 
+ 
6 
d-g 
- 
8 
def 
- 
44 
e s 
+ 
30 
y 8 
bg 2 
— 
1 
efg 
+ 
5 
deg 
- 
2 
df 2 
- 
8 
ef 
4* 
6 
The final result is that we have the values of the invariants B, I, P, W, Z 
and the leading coefficients of the covariants A, C, D, E, F, G, H, J, K, L, M, 
N0, Q, R: also the means of calculating the leading coefficients of the remaining 
covariants S, T, U, V, X, Y.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.