GEOMETRY.
575
790]
36. It is important to express the nine coefficients in terms of three independent
quantities. A solution which, although unsymmetrical, is very convenient in Astronomy
and Dynamics is to use for the purpose the three angles 6, cf), t of fig. 19; say
6 = longitude of the node; <f> = inclination; and t = longitude of x 1 from node.
Pig. 19.
The diagram of transformation then is
X
y
z
»1
COS T COS 9 — sin T sin 9 COS cf)
COS T sin 9 + sin T cos 6 cos <f>
sin T sin (f)
Vi
— sin T cos 0 — COS T sin 0 COS 4>
— sin r sin 9 + cos r cos 9 COS 4>
COS T sin 4>
Si
sin 6 sin cf)
— COS 9 sin
COS cf)
But a more elegant solution (due to Rodrigues) is that contained in the diagram
X
V
z
1 + X 2 - fl? - v 2
2 (A/a — v)
2 (Av + /a)
Vi
2 (A/a + v)
1 — A 2 + /A 2 — v 2
2 (/av - A)
«1
2 (vA — /a)
2 (/av + A)
1 _ ^
(1 + A. 2 + /a 2 + v 2 ).
The nine coefficients of transformation are the nine functions of the diagram, each
divided by 1 + A 2 + ¡j? + v* ; the expressions contain as they should do the three arbitrary