C. XI.
9
[723
723]
VARIOUS NOTES.
65
° 2 ) 2 — o,
other integral
On a Formula in Elliptic Functions : p. 127.
Cil 'll
Writing en u = , then the formulae p. 63 of my Elliptic Functions give
rp rpr ß ß/
sn (u + v) = Q _ -ß,, en (u + V) = G _ Q, ;
and, substituting for T, T', B, B', and G, C' their values, we obtain
. s sn u en v 4- sn v en u
sn (u + v)= - -J- ,
1 + k- sn u en u sn v en v
en (u + v) =
en u en v — sn u sn v
1 — /c 2 sn u en u sn v en v ’
formulae which, as regards their numerators, correspond precisely with the formulae,
and
sin (u + v) = sin u cos v + sin v cos u
cos {u + v) = cos u cos v — sin u sin V,
of the circular functions, and which in fact reduce themselves to these on putting k = 0.
The foregoing formulae, putting therein lc~ = — 1, are the formulae given by Gauss,
Werke, t. ill., p. 404, for the lemniscate functions sin lemn (a + b) and cos lemn {a + b) ;
where it is to be observed that these notations do not represent a sine and a cosine,
but they are related as the sn and en, viz. that
cos lemn a = V(1 — sin lemn 2 a) 4- V(1 + sin lemn 2 a).