Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 11)

725] 
NEW FORMULA FOR THE INTEGRATION OF + 
vM- J Y 
69 
v 7 
b-z 
d — z. 
sj(~T^) K a ~ c)V(bdb 1 d 1 ) + (b -d)J(acaA)} 
(6c, aoZ) 
\/ (a - ¿) ^( abCldl ) ~ ^( a ibicd)} 
/^(adbiCj) — Viaidjbc) 
¿=3) (cd - ,l6) 
(a — c) v^bdbjd!) — (6 — cZ) ^(acaA) ’ 
a 
a ■ 
c — z 
d— z 
^) {(a — d) VibcbjCj) + (6 — c) A/Cadaidi)} 
(a — 6) Vicd^dj) — (c — d) VCabajbj) 
\/(a - d j :ia ~ ,; l V( c <fcid,) + (c - (/) v'(aba,bi)) 
V 
a — c 
a 
(be, ad) 
2) { / '/(acb 1 d 1 ) - V(a^bd)} 
VCadbjCj) — ^/(aidjbc) 
dj {(« — d) VlbcbjCj) — (6 — c) VCadajdj)] 
(a — c) /^(bdbidj) — (b—d) V(acajCi) 
d )(bd, ac) 
(a — 6) Vlcdcjdj) - (c — d)V(abaxbx) ’ 
The twelve equations are equivalent to each other, each giving ^ as one and the 
same function of x, y\ and regarding £ as a constant of integration, any one of the 
equations is a form of the integral of the proposed differential equation. 
Writing in the formulae x — a, b, c, d successively, the formulae become 
x = a, 
a — z 
d — z 
a x 
dx’ 
b — z _b 1 
d — z d x ’ 
X = 6, X = c, 
c — ft b] 6 — a c x 
d — b c 1 > d — c b x ’ 
c — 6 a x 6 — a.b — c dj 
d —a c x ’ d — a.d — c bj ’ 
x =d, 
b .a — c dj 
d — 6. d — c a. 
c — a. c 
b d, 
c a. 
eZ — £ d x ’ d — a. d — b c 1 ’ 
d — a b x ’ 
a — b Cx 
d — c aj 
a — c bj 
d — b a, ’ 
viz. in the first case we have z — y, and in each of the other cases 2 equal to a 
linear function of y. 
yy + 8 y 
Cambridge, July 3, 1878.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.