725]
NEW FORMULA FOR THE INTEGRATION OF +
vM- J Y
69
v 7
b-z
d — z.
sj(~T^) K a ~ c)V(bdb 1 d 1 ) + (b -d)J(acaA)}
(6c, aoZ)
\/ (a - ¿) ^( abCldl ) ~ ^( a ibicd)}
/^(adbiCj) — Viaidjbc)
¿=3) (cd - ,l6)
(a — c) v^bdbjd!) — (6 — cZ) ^(acaA) ’
a
a ■
c — z
d— z
^) {(a — d) VibcbjCj) + (6 — c) A/Cadaidi)}
(a — 6) Vicd^dj) — (c — d) VCabajbj)
\/(a - d j :ia ~ ,; l V( c <fcid,) + (c - (/) v'(aba,bi))
V
a — c
a
(be, ad)
2) { / '/(acb 1 d 1 ) - V(a^bd)}
VCadbjCj) — ^/(aidjbc)
dj {(« — d) VlbcbjCj) — (6 — c) VCadajdj)]
(a — c) /^(bdbidj) — (b—d) V(acajCi)
d )(bd, ac)
(a — 6) Vlcdcjdj) - (c — d)V(abaxbx) ’
The twelve equations are equivalent to each other, each giving ^ as one and the
same function of x, y\ and regarding £ as a constant of integration, any one of the
equations is a form of the integral of the proposed differential equation.
Writing in the formulae x — a, b, c, d successively, the formulae become
x = a,
a — z
d — z
a x
dx’
b — z _b 1
d — z d x ’
X = 6, X = c,
c — ft b] 6 — a c x
d — b c 1 > d — c b x ’
c — 6 a x 6 — a.b — c dj
d —a c x ’ d — a.d — c bj ’
x =d,
b .a — c dj
d — 6. d — c a.
c — a. c
b d,
c a.
eZ — £ d x ’ d — a. d — b c 1 ’
d — a b x ’
a — b Cx
d — c aj
a — c bj
d — b a, ’
viz. in the first case we have z — y, and in each of the other cases 2 equal to a
linear function of y.
yy + 8 y
Cambridge, July 3, 1878.