Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 12)

2 
ON CURVILINEAR COORDINATES. 
[799 
are written to denote 
dx dx dx d 2 x d~x d?x . 
dp ’ dq ’ dr ’ dp 2 ’ dp dq ’ dq 2 ’ C "’ 
and so in other cases; 
in particular, 
x ly x 2 , x 3 denote 
dx 
dp’ 
dx 
dq’ 
dx 
dr ’ 
2/u y%) y% „ 
Zi, z 2, z 3 
dy dy dy 
dp’ dq’ dr ’ 
dz dz dz 
dp’ dq’ dr' 
I. 
The minors formed with these differential coefficients are denoted by suffixed letters 
rj, £, thus 
l?i> £ 3 denote y 3 z 3 y 3 z 2 , y$Z\ — yiZ 3 , yi z -i y? z i> 
Vi, V-2> Vi >> ZoX s Z 3 X 2 , Z 3 X 1 Z\X 3 , z x x 2 z 2 x ly 
£i> £-2) Kz » x 2y?> x 3 y 2 , x 3 y 1 x 1 y 3 , x 1 y 2 x 2 y 1} 
so that, as regards these letters £, 77, the suffixes do not denote differentiations. 
The determinant 
®i, Vi, is put = L: 
X 2, 2/2 > Z 2 
x 3> y3> Z z 
and the symbols (a, b, c, f, g, h), {A, B, G, F, G, H) are defined as follows: 
a = 
xd + 
2/i 2 + 
z 2 , 
A = 
£ 2 + 
Vi + 
b = 
X.? + 
y*+ 
Z 2 , 
5 = 
yd + 
r* 2 , 
c = 
x 3 + 
yi + 
Z 3, 
G = 
& + 
V3 2 + 
f = x 2 x 3 + y.py 3 + , 
g = X 3 X x + y 3 y x + Z 3 Z\ , 
h = x x x 2 + y x y 2 + Z \ Z 2, 
F — ^2^3 + V2V3 + £>£3 . 
G — ^3^1 VzVi *b £ 3 £i, 
H=ZlZ‘2 +VlV2 + £l £2 ■ 
We have then, further, 
X\, 
yi> 
Z 1 
= L, 
a, 
h, 
g 
x 2) 
yz, 
Z 2 
h , 
b, 
f 
X 3> 
y s , 
Z 3 
g> 
f , 
c 
Zi, 
Vi, 
?1 
= L 2 , 
A, 
H, 
G 
Z2, 
V2, 
£2 
H, 
B, 
F 
£» 
Vs, 
Zz 
G, 
F, 
G 
{A, B, G, F, G, H) = (be — f 2 , ca — g 2 , ab — h 2 , gh — af , hf — bg , fg — ch ), 
L 2 (a , b, c, f, g, h ) = (BG-F 2 , GA-G 2 , AB — H 2 , GH - AF, HF-BG, FG-GH), 
which equations are at once proved, and are fundamental ones in the theory.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.