2
ON CURVILINEAR COORDINATES.
[799
are written to denote
dx dx dx d 2 x d~x d?x .
dp ’ dq ’ dr ’ dp 2 ’ dp dq ’ dq 2 ’ C "’
and so in other cases;
in particular,
x ly x 2 , x 3 denote
dx
dp’
dx
dq’
dx
dr ’
2/u y%) y% „
Zi, z 2, z 3
dy dy dy
dp’ dq’ dr ’
dz dz dz
dp’ dq’ dr'
I.
The minors formed with these differential coefficients are denoted by suffixed letters
rj, £, thus
l?i> £ 3 denote y 3 z 3 y 3 z 2 , y$Z\ — yiZ 3 , yi z -i y? z i>
Vi, V-2> Vi >> ZoX s Z 3 X 2 , Z 3 X 1 Z\X 3 , z x x 2 z 2 x ly
£i> £-2) Kz » x 2y?> x 3 y 2 , x 3 y 1 x 1 y 3 , x 1 y 2 x 2 y 1}
so that, as regards these letters £, 77, the suffixes do not denote differentiations.
The determinant
®i, Vi, is put = L:
X 2, 2/2 > Z 2
x 3> y3> Z z
and the symbols (a, b, c, f, g, h), {A, B, G, F, G, H) are defined as follows:
a =
xd +
2/i 2 +
z 2 ,
A =
£ 2 +
Vi +
b =
X.? +
y*+
Z 2 ,
5 =
yd +
r* 2 ,
c =
x 3 +
yi +
Z 3,
G =
& +
V3 2 +
f = x 2 x 3 + y.py 3 + ,
g = X 3 X x + y 3 y x + Z 3 Z\ ,
h = x x x 2 + y x y 2 + Z \ Z 2,
F — ^2^3 + V2V3 + £>£3 .
G — ^3^1 VzVi *b £ 3 £i,
H=ZlZ‘2 +VlV2 + £l £2 ■
We have then, further,
X\,
yi>
Z 1
= L,
a,
h,
g
x 2)
yz,
Z 2
h ,
b,
f
X 3>
y s ,
Z 3
g>
f ,
c
Zi,
Vi,
?1
= L 2 ,
A,
H,
G
Z2,
V2,
£2
H,
B,
F
£»
Vs,
Zz
G,
F,
G
{A, B, G, F, G, H) = (be — f 2 , ca — g 2 , ab — h 2 , gh — af , hf — bg , fg — ch ),
L 2 (a , b, c, f, g, h ) = (BG-F 2 , GA-G 2 , AB — H 2 , GH - AF, HF-BG, FG-GH),
which equations are at once proved, and are fundamental ones in the theory.