859] COMPLEX OF LINES WHICH MEET A UNICURSAL QUARTIC CURVE. 429
If for the six coordinates we substitute their values, fiz — 7y, &c., we obtain
n, = (x, y, z, w) A (a, /3, 7, 8) 4 = 0, which, regarded as an equation in (x, y, z, w), is
the equation of the cone, vertex (a, /3, 7, 8), passing through the quartic curve;
this equation should evidently be satisfied if only ®, P, Q, R are each = 0, viz. il
must be a linear function of (©, P, Q, R); and by symmetry, it must be also a
linear function of (® 0 , P 0 , Q 0 , R 0 ), where
©o = aS — /3y, P 0 = a 2 y — /3 3 , Q 0 = ay 2 - ¡3*8, P 0 = 7 3 - /38*,
viz. the form is il, = (©, P, Q, R) (©„, P 0 , Q 0 , P 0 ), an expression with coefficients which
are of the first or second degree in (x, y, z, w) and also of the first or second degree
in (a, /3, 7, 8).
To work this out, I first arrange in powers and products of (a, 8), (/3, 7), ex
pressing the quartic functions of (%, y, z, w) in terms of (©, P, Q, R), as follows :
0=
a 4
-b 3 h
+ bf 2 g
+ c</>
- acfh
+ 2c 2 h 2
- 4a 2 eh
+ af 3
- a 3 f
a 4
a :: 5
- Z 4
+ yzw 2
0
- z 4 + yziv 2
- zR
a 2 8 2
- 2xyzw
+ 2y 2 z 2
- 2xyzw + 2y 2 z 2
-2 yzQ
ad 3
+ x 2 yz
- y 4
+ x 2 yz - y 4
+ yP
5 4
0
a s /3
- zw 3
+ ziv 3
0
a 2 p5
+ 2xzio 2
+ //2 2 M;
- 3xzw 2
- xzw 2 + yzhv
- zwQ
a/35 2
- .X 2 2iy
+ 3//%
- XlJZ 2
- 4xyz 2
+ 3x 2 zw
+ 2 x 2 zw + 3 yhv — oxyz 2
+ 2x20 - 3 yQ
/35*
+ .-r?/ 3
- x s z
+ xy 3 - x 3 z
— xP
a 3 y
+ 2 3 ii>
— yiv 3
+ z 3 w-yw 3
+ wR
a 2 yb
+ 3oS2 3
- OT/M> 2
- y 2 ziv
- 4y 2 ziu
+ 3 xyw 2
+ 3xz 3 + 2xyw 2 - 5y 2 zw
+ 2ijwQ + 3zQ
ay8 2
+ 2 x 2 yw
+ xyz 2
- 3 x 2 yw
- x 2 yw 4- xyz 2
yd 2
- X 3 i/
+ x 3 y
0
a 2 /3 2
0
a 2 /3y
+ £M> 3
- yzw 2
+ xw 3 - yzw 2
+ w 2 Q
a 2 y 2
- 3xz 2 w
+ y 2 w 2
+ 2 y 2 w 2
— 3 xz 2 w + 3 y 2 w 2
- 3wQ
a p 2 8
- 3i/ 2 iu 2
- xz 2 w
+ 4 yz 3
- 3yho 2 - xz 2 w + iyz ?>
- 4z 2 Q + 3wQ
apyd
- 2a; 2 2t) 2
+ 2xyzw
+ 8xyzw
- 8y 2 z 2
- 2x 2 w 2 +10xyzw - 8y 2 z 2
+ (- 2 xw + 8 yz) 0
ay 2 5
- 3x 2 z 2
- X?/ 2 iy
+ 4 y 3 z
- 3x 2 z 2 - xyho + 4y s z
- 4y 2 B - 3xQ
/3 2 5 2
-- 3xy 2 io
+ a; 2 * 2
+ 2 x 2 z 2
— 3 xy 2 w + 3x 2 z 2
+ 3x Q
¡3yS*
+
- xhyz
+ X 3 W - X 2 IJZ
+ .i ,2 0
y 2 S 2
0
a(3 3
+ ?/u> 3
— z 3 w
+ yw 3 - zho
- wR
a/3 2 y
+ xzw 2
- 4 yz 2 w
+ 3yzhv
+ xzw 2 - yz 2 w
+ zwQ
a @y :
— xyw 2
- 4xyiv 2
+ 8y 2 zw
- 3y 2 zw
— 5 xyw 2 + oy 2 zio
— 5 ywQ
ay 3
+ 3x 2 zw
- 4//%e
+ yho
+ 3x 2 zw - 3yho
+ 3 ivP
/3 :! 5
+ 3xyw 2
— 4xz 3
+ xz 3
+ 3xyw 2 - 3 xz 3
- 3 xR
/3 2 y5
- X 2 ZW
- 4x 2 zw
+ 8 xyz 2
- 3 xyz 2
- 5x 2 ziu + 5xyz 2
- 5xzQ
Py 2 d
+ xhjio
- 4xy 2 z
+ 3 xy 2 z
+ x 2 yw — xy 2 z
+ xyQ
y ! 5
+ as 3 *:
- xy *
+ x 3 z-xy 3
+ xP
|3 4
+ Z 4
- aszo 3
+ z 4 — xw 3
+ zR-io 2 Q
P 3 y
- 4j/z 3
+ 4xz 2 w
- 4yz 3 -l- 4xz 2 w
+ 42-0
P*y 2
+ 6?/ 2 2 2
+ 2 x 2 w 2
- 8xyzw
+ 2x 2 w 2 - 8xyziv + 6y 2 z 2
+ (2xw - Cyyz) 0
py s
- 4// 3 2
+4xy 2 w
— 4 y 3 z + 4 xy 2 w
+ 4 y 2 Q
7 4
+ ?y 4
- ,T%
+ y 4 - x 3 w
- yP-x 2 Q