Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 12)

859] COMPLEX OF LINES WHICH MEET A UNICURSAL QUARTIC CURVE. 429 
If for the six coordinates we substitute their values, fiz — 7y, &c., we obtain 
n, = (x, y, z, w) A (a, /3, 7, 8) 4 = 0, which, regarded as an equation in (x, y, z, w), is 
the equation of the cone, vertex (a, /3, 7, 8), passing through the quartic curve; 
this equation should evidently be satisfied if only ®, P, Q, R are each = 0, viz. il 
must be a linear function of (©, P, Q, R); and by symmetry, it must be also a 
linear function of (® 0 , P 0 , Q 0 , R 0 ), where 
©o = aS — /3y, P 0 = a 2 y — /3 3 , Q 0 = ay 2 - ¡3*8, P 0 = 7 3 - /38*, 
viz. the form is il, = (©, P, Q, R) (©„, P 0 , Q 0 , P 0 ), an expression with coefficients which 
are of the first or second degree in (x, y, z, w) and also of the first or second degree 
in (a, /3, 7, 8). 
To work this out, I first arrange in powers and products of (a, 8), (/3, 7), ex 
pressing the quartic functions of (%, y, z, w) in terms of (©, P, Q, R), as follows : 
0= 
a 4 
-b 3 h 
+ bf 2 g 
+ c</> 
- acfh 
+ 2c 2 h 2 
- 4a 2 eh 
+ af 3 
- a 3 f 
a 4 
a :: 5 
- Z 4 
+ yzw 2 
0 
- z 4 + yziv 2 
- zR 
a 2 8 2 
- 2xyzw 
+ 2y 2 z 2 
- 2xyzw + 2y 2 z 2 
-2 yzQ 
ad 3 
+ x 2 yz 
- y 4 
+ x 2 yz - y 4 
+ yP 
5 4 
0 
a s /3 
- zw 3 
+ ziv 3 
0 
a 2 p5 
+ 2xzio 2 
+ //2 2 M; 
- 3xzw 2 
- xzw 2 + yzhv 
- zwQ 
a/35 2 
- .X 2 2iy 
+ 3//% 
- XlJZ 2 
- 4xyz 2 
+ 3x 2 zw 
+ 2 x 2 zw + 3 yhv — oxyz 2 
+ 2x20 - 3 yQ 
/35* 
+ .-r?/ 3 
- x s z 
+ xy 3 - x 3 z 
— xP 
a 3 y 
+ 2 3 ii> 
— yiv 3 
+ z 3 w-yw 3 
+ wR 
a 2 yb 
+ 3oS2 3 
- OT/M> 2 
- y 2 ziv 
- 4y 2 ziu 
+ 3 xyw 2 
+ 3xz 3 + 2xyw 2 - 5y 2 zw 
+ 2ijwQ + 3zQ 
ay8 2 
+ 2 x 2 yw 
+ xyz 2 
- 3 x 2 yw 
- x 2 yw 4- xyz 2 
yd 2 
- X 3 i/ 
+ x 3 y 
0 
a 2 /3 2 
0 
a 2 /3y 
+ £M> 3 
- yzw 2 
+ xw 3 - yzw 2 
+ w 2 Q 
a 2 y 2 
- 3xz 2 w 
+ y 2 w 2 
+ 2 y 2 w 2 
— 3 xz 2 w + 3 y 2 w 2 
- 3wQ 
a p 2 8 
- 3i/ 2 iu 2 
- xz 2 w 
+ 4 yz 3 
- 3yho 2 - xz 2 w + iyz ?> 
- 4z 2 Q + 3wQ 
apyd 
- 2a; 2 2t) 2 
+ 2xyzw 
+ 8xyzw 
- 8y 2 z 2 
- 2x 2 w 2 +10xyzw - 8y 2 z 2 
+ (- 2 xw + 8 yz) 0 
ay 2 5 
- 3x 2 z 2 
- X?/ 2 iy 
+ 4 y 3 z 
- 3x 2 z 2 - xyho + 4y s z 
- 4y 2 B - 3xQ 
/3 2 5 2 
-- 3xy 2 io 
+ a; 2 * 2 
+ 2 x 2 z 2 
— 3 xy 2 w + 3x 2 z 2 
+ 3x Q 
¡3yS* 
+ 
- xhyz 
+ X 3 W - X 2 IJZ 
+ .i ,2 0 
y 2 S 2 
0 
a(3 3 
+ ?/u> 3 
— z 3 w 
+ yw 3 - zho 
- wR 
a/3 2 y 
+ xzw 2 
- 4 yz 2 w 
+ 3yzhv 
+ xzw 2 - yz 2 w 
+ zwQ 
a @y : 
— xyw 2 
- 4xyiv 2 
+ 8y 2 zw 
- 3y 2 zw 
— 5 xyw 2 + oy 2 zio 
— 5 ywQ 
ay 3 
+ 3x 2 zw 
- 4//%e 
+ yho 
+ 3x 2 zw - 3yho 
+ 3 ivP 
/3 :! 5 
+ 3xyw 2 
— 4xz 3 
+ xz 3 
+ 3xyw 2 - 3 xz 3 
- 3 xR 
/3 2 y5 
- X 2 ZW 
- 4x 2 zw 
+ 8 xyz 2 
- 3 xyz 2 
- 5x 2 ziu + 5xyz 2 
- 5xzQ 
Py 2 d 
+ xhjio 
- 4xy 2 z 
+ 3 xy 2 z 
+ x 2 yw — xy 2 z 
+ xyQ 
y ! 5 
+ as 3 *: 
- xy * 
+ x 3 z-xy 3 
+ xP 
|3 4 
+ Z 4 
- aszo 3 
+ z 4 — xw 3 
+ zR-io 2 Q 
P 3 y 
- 4j/z 3 
+ 4xz 2 w 
- 4yz 3 -l- 4xz 2 w 
+ 42-0 
P*y 2 
+ 6?/ 2 2 2 
+ 2 x 2 w 2 
- 8xyzw 
+ 2x 2 w 2 - 8xyziv + 6y 2 z 2 
+ (2xw - Cyyz) 0 
py s 
- 4// 3 2 
+4xy 2 w 
— 4 y 3 z + 4 xy 2 w 
+ 4 y 2 Q 
7 4 
+ ?y 4 
- ,T% 
+ y 4 - x 3 w 
- yP-x 2 Q
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.